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Foreword

The summer of 1985 marked the time of the second Infrared Detector

lechnology Workshop for space astronomy sponsored by NASA. It is

remarkable that in just the 2 years since the first Workshop was held such

important advances have been made. It has become clear that this is a

field of fast-moving technologies. The large attendance by the scientific

community, industry, and government is indicative of the keen interest and
need for an open forum where there can be a good exchange of information

and discussion. The individual papers are presented here, unedited, as

submitted by the authors.

The-Workshop was organized to be a review of the status and progress of
astronomical infrared detector research supported by NASA within the Office
of Space Science and Applications (OSSA) and the Office of Aeronautics and
Space Technology (UAST). The coordinated program between OAST and OSSA is
a primary reason for such excel|ent progress. From the points of view of
both offices, this coordination is important. In times of budgetary
constraints, it is necessary to ensure that the most important technologies
are studied in a timely manner for high-priority space missions, so that
during the development phase there is no impact on the mission schedule.

Since the Space Infrared Telescope Facility (SIRTF) is a premiere
scientific space mission now under study, a large portion of this Workshop
addressed those technologies useful for the cryogenically cooled telescope
of SIRTF. The Workshop also included tecilnologies which could be used with
an ambient-temperature telescope in space, such as the Hubble Space
Telescope (HST) for its second-generation instruments.

At the close of the Workshop, invited sun_nary statements were given by
Drs. J. Houck of Cornell University, E. Wright of the University of

California at Los Angeles, F. Giilett of the National Uptical Astronomy

Observatories, and L. Greenberg of The Aerospace Corporation. The
sulm_laries concluded that very significant and encouraging progress has been
made, but that vigorous research and development are needed for arrays to
attain background-limited performance on SIRTF.

The Workshop made clear that SIRTF and other future space opportunities

present tremendous technological challenges for scientific instrumentation

to capitalize fully on the potential of telescopes in space. Intellectual

resources combined with financial support are required to meet these

challenges, and should help increase our understanding of basic phenomena
throughout our universe.

Nancy W. Boggess
NASA Headquarters

Craig R. McCreight
_les Research Center
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AGENDA

Infrared Detector Technology Workshop

NASA Ames Research Center

Auditorium, Building N201

Message Phone: (415) 694-5256 or FTS 464-5256

Tuesday, August 13, 1985

8:30

8:45

10:00

10:20

12:10

1:10

Introductory Remarks

Opening Remarks

"Detector Requirements for Space

Astronomy"

"Near Infrared Observations of

the Space Shuttle and Other

Orbiting Objects"

"Extrinsic Detector Characteri-

zation at Ultra-Low Backgrounds"

Break

"Development of Integrating
JFET Readouts"

"Long Wavelength Detectors for

SIRTF"

"Transient- and Temperature-

Dependent Behavior in Ge:Be
Photoconductors"

"Detector Systems for ISO's

Photometer ISOPHOT"

Lunch

"Progress Report on NTD Germ-

anium for Low-Temperature
Bolometers"

"Characterization of NTD Germ-

anium and Ion-Implanted Silicon

Bolometers at 0.3 K and 0.1 K"

N. W. Boggess (NASA Headquarters)

C. R. McCreight (Ames Research Center)

E. L. Wright (UCLA)

F. Witteborn, L. Caroff (Ames Research

Center), D. Rank (UC Santa Cruz), G.

Ashley (AVCO Everett Research

Laboratory)

E. T. Young, D. K. Speed (U. Arizona)

F. J. Low, M. Alwardi (U. Arizona and

Infrared Laboratories)

P. L. Richards (UC Berkeley)

N. M. Haegel, E. E. Haller (Lawrence

Berkeley Laboratory)

J. Wolf, D. Lemke, M. Burgdorf, D.

Lutz (Max Planck Institut f_r
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E. E. Hailer (Lawrence Berkeley

Laboratory)

H. Moseley, R. Kelley, A. E. Szymkowiak

(Goddard Space Flight Center), M. Juda,

D. McCammon, J. Zhang (U. Wisconsin),

E. E. Hailer (Lawrence Berkeley Lab)
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Tuesday, August 13, 1985 (cont'd)

2:45

3:05

4:00

"A Progress Report on Bolometers

Operating at 0.1K using Adia-

batic Demagnetization Refrig-

eration"

"Low-Background InSb Array

Development"

Break

"InSb Arrays: Astronomy with a

32 x 32 CCD / Development of a

58 x 62 DRO"

Development of InSb and Si:x

Arrays for ISO Camera

Discussion -- Status of SIRTF

-- Status of ISO

5:30 Adjourn

7:30 Banquet (Chef Chu's)

T. Roellig, L. Lesyna, M. Werner,

P. Kittel (Ames Research Center)

R. D. Thom, B. T. Yang (Santa Barbara

Research Center)

W. J. Forrest, J. L. Pipher (U.

Rochester)

F. Sibille et al. (Observatoire de

Lyon)

M. W. Werner, J. P. Murphy (Ames

Research Center)

J. Wolf (Max Planck Institut fur

Astronomie), F. Sibille (Observatoire

de Lyon)

Wednesday, August 14, 1985

8:30

10:20

"Shortwave Photovoltaic HgCdTe

Detector Arrays for Space

Astronomy"

"Characterization of 2.5 Micron

HgCdTe Detectors for Ultra Low

Background Applications"

"Evaluation of Rockwell HgCdTe

Arrays for Astronomical Use"

"Tests of Rockwell HgCdTe PACE

Array"

Break

A. Sood, N. Hartle, J. Marciniec, P.

Zimmermann (Honeywell Electro-Optics

Division)

D. DePoy, D. N. B. Hall (U. Hawaii)

M. J. Lebofsky, E. F. Montgomery,

W. F. Kailey (U. Arizona)

M. Hereld, D. A. Harper (U. Chicago)

X



Wednesday, August 14, 1985 (cont'd)

10:40

12:15

1:15

"Si:As BIB Detector Arrays"

"A Study of Si:In Hybrid Surface

Channel IRCCD Device"

"Imagery with a Si:Bi 16 × 16

Array"

Lunch

"58 x 62 Si:Sb Detector Array

for Low-Background Applications"

"Preliminary Test Data Using the

MOS DRO with Si:In Detector

Material"

"Evaluation of Si:Ga Direct Read-

out Array -- Preliminary Results"

R. Bharat, M. D. Petroff, J. J. Speer,

M. G. Stapelbroek (Rockwell Science

Center)

E. Tollestrup, R. W. Capps (U. Hawaii)

J. H. Goebel, N. Moss, C. R. McCreight

(Ames Research Center), D. Rank (UC

Santa Cruz), W. Wisniewski (U. Arizona)

M. S. Worley, S. D. Gaalema (Hughes

Aircraft Company/IEGTC)

A. Fowler, R. Joyce (NOAO/Kitt Peak

National Observatory)

G. Lamb, P. Shu, D. Lokerson) D.

Gezari, J. Bowser (Goddard Space Flight

Center)

2:45

3:05

4:00

Break

"Si:Ga and Si:As Direct Readout

Detector Arrays"

"Development of the Unit Cell

of a Ge:Ga Array"

Summary and Conclusion

J. F. Arens, M. C. Peck (UC Berkeley),

S. Gaalema (Hughes Aircraft Company)

C. A. Schnitzer, C. M. Parry (Aerojet

ElectroSystems Company)

xi
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Detector Requirements for Space Infrared Astronomy N 8 7 - 1 3 7 0 5

by Edward L. Wright, UCLA Astronomy

I have been given the easy job of assigning the problems which the other

speakers at this workshop must solve. In this professorial role I have

decided to start my lecture with a quiz:

Why observe from space?

A. Better transmission.

B. Lower background.

C. Better "seeing"

D. Spend more $$$$

E. All of the above

The answer of course is E, all of the above. Since space infrared astronomy

will be an expensive operation, I want to describe the limits of performance

that can be achieved, given the low background in space, the lack of

atmospheric distortion, and the availability of the entire infrared spectrum.

The natural background in space is composed of several components: the

scattered zodiacal light, the diffuse galactic light, the thermal zodiacal

light, the thermal radiation from galactic dust, and the 2.7 K cosmic

background. Figure i presents the sum of these components in a fairly

unconventional form: Planck brightness temperature vs. wavenumber. Any

background-limited (BLIP) detector must have a temperature less than the

Planck brightness temperature of the background, and practical detectors

require much lower temperatures. Telescope mirrors, however, are nearly

perfect devices, so the same plot on linear axes in Figure 2 shows where the

Hubble Space Telescope (HST) and the Large Deployable Reflector (LDR) are

capable of natural background-limited performance.

For detectors the most important aspect of the background is the number

of photons falling on each pixel. Figure 3 shows a plot of the photons per

second per octave per diffraction-limited pixel both from the natural

backEround and from a warm telescope such as LDR. I have used the definition

An = _2 for the diffraction limit, which gives the correct transition to

single mode coherent systems. Thus the plotted quantity is _I9%2/hv. There

are two regions in this chart where the current state of detector array

development is far from meeting the challenge of BLIP operation in space: the

3 _m region near the zodiacal light minimum, and the high background region
for LDR with % > 30 _m.

VERY LOW BACKGROUNDS

A reasonable photometric camera on SIRTF would have a transmission of

30%, including filters, and a fractional bandwidth of i/3, leading to a flux

of I photon/second on a diffraction-limited pixel at 3 _m. This gives a BLIP

NEP of 10-19 W//Hz. Clearly a BLIP detector must have a dark current < 0.5

e/sec. By comparing the shot noise current caused by dark current to the

Johnson noise current from the junction resistance

(21de)0.5 = (4kT/R) 0.5 amp/JHz
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I_ind that the junction resistance must be greater than

(R/T) > 2 * 1015 _/K

to give Id < 0.5 e/see. For InSb or HgCdTedetectors operating near 50 K, the
detector resistance must be more than 1017 _!

For detectors in an integrating array, the read noise must be less than
the square root of the numberof photons collected. Taking I000 seconds as an
optimistic upper limit to the possible length of an integration in low Earth
orbit I find that the read noise must be less than 22 electrons.

Spectroscopy in the 3 _m region will be a very powerful tool for
extragalactic and cosmological problems, but will require even better detector
performance. For a resolution _/A_ = I000, and a slightly larger than
diffractlon-limited aperture, a detector in a spectrograph will receive 0.01
photons/second. This application requires dark currents < 0.005 e/sec,
detector impedances> I0_= _ at 50 K, and read noises < 2.2 electrons.

I have concentrated on the resistance of the detectors, and not the
capacitance, because resistors generate noise and capacitors do not. The /kTC

charge noise on a capacitor is just the Johnson noise current _4kT/R A/_Hz of

the resistor across it integrated over the effective bandwidth I/4RC Hz of the

RC circuit. Thus when a pixel in an array is reset by connecting the storage

capacitor to a fixed potential through a small reset resistance, the charge

after resetting has a variance of kTC. During an integration, however,

thermal effects change the charge very slowly, with the time constant given by

RC, which for a 0.01 pf well connected to a 1019 _ detector is longer than one

day. By using a non-destructive readout to measure Q1 just after reset and Q2

just at the end of the integration, the variance of the signal Q2-QI is given

by

var(Q2-Ql) = 2kTC(I - e-t/RC)

Thus for integration times t << RC the noise is (2kTt/R) 0.5 which is just

Johnson noise. The Millikan oil drop experiments used to search for free

quarks routinely achieve 0.01 electron rms noise, which is I00-I000 times

smaller than /kTC.

Achieving sub-electron read noises in an integrated array presents a

great challenge, but the required operations are easy to describe. Since

stability over the integration time is needed, and DC circuits are not very

stable, the charge must be modulated by "sloshing" it on and off the gate of a

FET. This makes the unit cell of the multiplexor array a very small vibrating

reed electrometer.

VERY LOW CONTRASTS

A second environment with very different requirements is the I00 _m

region from a warm telescope such as LDR. Here the problem is the very large
background of 1012 photons/second. Astronomers will want to observe sources

right to the limit imposed by photon statistics, which after a 1 second

exposure is a contrast of I part per million. The solution has been to chop

the signal and have separate AC coupled amplifiers and phase sensitive
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demodulators for each pixel, but this approach becomes impractical for arrays

with more than a few dozen detectors. However, since the detectors for a I00

_m camera will probably be space more than 500 _m apart, one could make a

multiplexor chip that includes an AC amplifier and phase sensitive demodulator

for each pixel.

The detectors for this application require very high detective quantum

efficiencies. A photoconductor with a high Gq but a low value of q will not

be satisfactory, because its DQE is n/2. Bolometers easily achieve DQE > 70%

and have NEPs less than the BLIP NEP of 10-15 W//Hz, but bolometers are

difficult to package in a 2 dimensional array. The blocked impurity band

(BIB) detectors available for k < 30 _m have high DQE, but have not been
available for I00 _m.

REQUIRED ARRAY SIZES

The diffractlon-limited cameras I have considered for SIRTF and LDR will

require large numbers of plxels. If I take a reasonable pixel size of O =

k/D, the 7' FOV of SIRTF covers 577 by 577 pixels at 3 _m. For LDR at I00 _m,

the 3' FOV requires 175 by 175 pixels. Of course a truly diffraction-limlted

camera would have pixel spacing given by the Nyqulst theorem: X/2D, and would

need 4 times as many pixels as given above.

To conclude, let me say that students who want credit for this workshop

should turn in their projects to me, Ned Wright, by 5 PM tomorrow.
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FIGURE I: The natural background from Earth orbit, plotted as Planck

brightness temperature vs. wavenumber.
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A Preliminary Assessment of Ground-based, Infrared Spectra of

SpaceLab 2 During Nighttime Portions of Its Orbit

F.C. Witteborn, L.J. Caroff, Ames Research Center

D.M. Rank, Lick Observatory

G. Ashley, AVCO Everett Research Laboratory, Inc.

Abstract: The Space Shuttle Challenger was observed spectroscopically in two

passes over Maui during the Spacelab 2 mission. Through most of one of the

passes strong bands centered at 1.52 and 1.69 um, tentatively identified as OH

bands, were detected. The average luminosity of the Shuttle in the 1.45 to

1.75 _m range was roughly equal to that of a star of magnitude +5.5. The

luminosity was much lower during part of the pass. Spectra from 0.65 to 2.4

um were obtained during a second pass. These showed that most of the non-

thermal emission is in the i.__ to 2.2 _m range as 'wo_"1_ be _xp_d......._o_

vibrationally excited OH.
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Introduction

Observations of a visible glow emanating from the ram side of Shuttle surfaces
(Banks et al. 1983), coupled with the proposal by Slanger (1983) that
vibrationally excited OHcould account for the glow, madeclear the need for
an infrared spectroscopic study of the orbiting Shuttle. The OHspectral
density near 1.6_mwould be at least 100 times higher than at 0.6 _m (Langhoff
et al., 1983). The possibility that this glow might impair the sensitivity of
infrared instruments on low orbiting platforms makessuch a study particularly
important. Observations fr_n the Orbiter cabin with an objective grating
device suggested that the glow could be attributed to NO2 (Swenson,Mende,
Clifton, 1984). Analysis of Atmospheric Explorer data (Yee and Abreu, 1983)
and recent rocket photometer data (Lopez-Moreno, Rodrigo and Vidal, 1985) both
provide strong evidence for OHglow in the vicinity of their respective
spacecraft. The latter article provide a review of recent attempts to
identify the contributions to the glow phenomena. A ground-based, photometric
observation of Spacelab I showedthat the Shuttle was exceptionally bright
near 1.6 _m, (magnitude +6.6) consistent with OHemission (Witteborn, O'Brien
and Caroff, 1985). To distinguish between these and other possibilities we
proposed a spectroscopic study of Spacelab 2, again using the 1.6 meter
telescope at the AdvancedResearch Projects Agency's Maui Optical Station
(AMOS).

Method: A circular variable-interference-filter spectrometer (CVF) (Fig. I)
wasmounted at the focus of the 1.6 meter AMOStracking telescope on Mt.
Haleakala. A dichroic beamsplitter allowed half the visible light to reach a
parfocal television camera used for fine guidance during tracking. The
Shuttle was observed only at night whenboth it and the AMOSwere in
darkness. The Shuttle is madevisible even in the Earth's shadowbecause of
diffusely scattered light and, perhaps, the glow phenomena. During the first
half of the second pass (August 6, 7 hr 54 min 39 sec) the Shuttle was lit by
the 40 watt filament of the electron plasma gun.

As soon as the Shuttle was acquired in the CVF's field-of-view (FOV), the CVF
was scanned repeatedly between 1.45 and 1.75 microns with I/AI=48 during the
first pass (August I, 9 hr 56 min 56 sec to 9 hr 59 min 50 sec) and between
0.65 and 2.4 microns with A/A1=38during the second pass. The tracking was
excellent, holding the Shuttle's center of luminosity constant relative to the
FOVto within a few arcseconds. At closest approach the Shuttle was 22
arcseconds long. The FOVwas 16 arcseconds diameter during the first pass and
24 arcseconds during the second pass. The passes lasted only about 3 minutes.

Spectra of calibration stars at two elevation angles were obtained before and
after each sighting to permit corrections for atmospheric extinction. The
wavelength scale was calibrated against a Xenonlamp.

An oscillating tertiary mirror movedthe Shuttle's image into and out of the
FOVso that the foreground radiation from the Earth's atmosphere did not
contribute to the ACcomponentof the signal. The detector was an indium
antimonide photovoltaic diode cooled to about 55K. Its output signal was sent
to a lock in amplifier, then digitized and stored in an Apple computer at 0.2
second intervals. A voltage corresponding to the CVFposition angle
(calibrated for wavelength) was simultaneously stored in the computer with the
corresponding signal. Both sets of values were subsequently store on disk.

2-2



Approximate analogue displays of signal and wavelength were recorded on a
strip-chart in real time.

Results: A strip-chart trace of the first useful night-time pass of Spacelab
2 over Maul is shownin Figure 2. This shows the temporal pattern of
luminosity. The spectrum from 1.45 to 1.75 microns was scanned once every 8
seconds. Wenote that for the first 32 seconds after the object was in the
FOVit was just detectable above the instantaneous noise level. (Further
analysis to be carried out later will integrate the signal over various
periods to provide greater photometric sensitivity.) Comparisonwith the AOV
star BS7235indicates a magnitude of approximately +8.5 during this part of
the pass, as the Shuttle's distance decreased from 565 km to 474 km. At 9 hr
57 min 36 sec the infrared brightness began to increase rapidly reaching a
magnitude of +5.5 at a distance of 324 km, 20 seconds after closest
approach. The overall brightness fluctuated somebut remained near this value
as the range increased to 750 km.

The large, short-term variations in intensity apparent on the strip chart are
emission lines. Several spectral scans representing 48 seconds of data are
superimposed and plotted against a wavelength scale in Figure 3. Two bands
show up repeatedly on successive scans. They are centered at 1.52 microns and
1.69 microns. The wavelength scale is accurate to 0.5%; the resolution is
about 2%. These bands correspond quite closely to the positions of the
strongest OHbands calculated by Langhoff et al. (1983) in their simulated
spectrum of the Explorer O-glow which was madewith the assumption that all
vibrational states were equally excited.

During the second useful Spacelab 2 pass, we scanned the full range from 0.65
to 2.4 microns and used a larger aperture to include the entire Shuttle at
closest range. Since this spectral range includes large terrestrial
absorption features, these data must be corrected using stellar spectra before
their appearance is meaningful. However, a preliminary glance at the raw data
shows that again the magnitude near 1.6 microns reached about +5.5, this time
just prior to pass overhead. The most prominant non-thermal feature appears
to be the 1.1 to 2.2 ummicron band complex which we would associate with
highly excited OHemission. Near 2.4 microns, thermal radiation from the
payload bay may be the dominant source.

Discussion: The sudden appearanceof OHlines during the first pass is
evidence that the componentof glow caused by OHemission is a variable
phenomenon. It is expected that a review of the Spacelab 2 housekeeping data
will show whether this display resulted from a water dumpor from a change in
attitude resulting in the exposure of hydrogen-rich surfaces to the ram
direction. The relative constancy of the glow as the Shuttle movedto 750 _m,
where the 16 arcsecond FOVwas nearly double the Shuttle's largest dimension
and the projected surface area only 0.2 times that at closest range, suggests
that the source of radiation was extended with a diameter of about 60
meters. An alternate explanation is that the intensity of the source was
increasing at a rate that roughly cancelled its dilution with distance.

Further analysis of the data is expected to enable us to put upper limits on
the glow intensity during the faint approach portion of the first pass.
Unfortunately, sensitivity limitations of the instrument will put this upper
limit in the range of 10 to 100 times the zodiacal background at 1.6 microns.
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The CVF/AMOSsystem was used to obtain spectra of several other large
satellites in the samewavelength ranges. No obvious infrared signal was
obtained, although further analysis is required. The visible light luminosity
of the Shuttle will also be determined from the co-mounted television
camera. Comparisonwith star images is underway to quantify the faintest
intensities observed.

Conclusion: The Shuttle glow is dominated by OHemission someof the time,
but not necessarily all of the time. The emission appears to be variable with
time and probably extended tens of meters beyond the Shuttle surface. The
luminosity extremes at 1.6 microns measured for Spacelab 2 bracket the 1.6
micron measurementmadefor Spacelab I.
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DARK CURRENT MEASURMENTS IN PHOTOCONDUCTORS

Erick T. Young

Donald Speed

Steward Observatory

University of Arizona

I. INTRODUCTION

The Space Infrared Telescope Facility (SIRTF) is envisioned

as a next generation space observatory for observations between 2

and 700 um. In order to address many of the important scientific

questions in areas such as cosmology, star formation, and galaxy

evolution, infrared detectors of unparalleled sensitivity will be

required. This paper describes measurments of one aspect of

detector performance that may be of importance at the very low

backgrounds expected with SIRTF.

SIRTF will be a meter-class cryogenic telescope capable of

diffraction-limited performance down to 2 um. To fully exploit

the potential of such a facility, it is highly desirable to have

detection systems limited only by natural backgrounds, in par-

ticular, scattered and emitted radiation from the zodiacal dust.

Table 1 gives some typical values for backgrounds expected at the

SIRTF focal plane. The zodiacal emission is represented by a

275K graybody with an emissivity of 7.1 x 10 -8 , and a telescope

optical efficiencty of 50% is assumed. The pixel size used in

this calculation is _/2D, the size appropriate for superresolu-

tion observations. The column I(e/s) gives the background
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3.5

TYPICAL SIRTF PHOTOMETER CONDITIONS

_ R(A/H) _ I(E/S) NOIsE(S00)

1,75 1 0,32 0.ii 14

12 2.4 2 323 67 259

20 i0 3 2096 389 645

60 20 5 7042 726 1095

induced photocurrent (in electrons/second ) if a responsivity of

R (A/W) is realized. Finally, NOISE(500) is the maximum readout

noise in a 500 second integration i{ the background limit is to

be reached.

If the noise associated with detector dark current is not to

be the limiting factor in system performance, the dark current

should be less than the background current. The table shows that

especially at the shorter wavelengths, exceedingly low dark cur-

rents are required. We describe dark current measurments for a

number of different discrete photoconductive detectors. These

materials are representative of those that might be used in a

SIRTF focal plane.

II. EXPERIMENTAL SETUP

The measurments were conducted in a standard Infrared

Laboratories liquid helium-cooled dewar. Consideralbe effort was

required to insure a truly zero background environment for the
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detectors. The arrangement used for these tests consisted of a

series of three nested helium-temperature baffle boxes with her-

metic electrical feedthroughs to the cold electronics. Small

photon-shielded apertures were used for pump-out of the chambers.

Figure 1 is a schematic of the electronics used. The cir-

cuit is similar to the integrating JFET amplifier described by

Low (1984 Appl.Opt., 23, 1308). The JFET is a 2N6483 thermally

isolated from the helium-temperature work surface with a thin-

wall fiberglass stalk. Roughly 1 mW of power is required to

maintain a device temperature of -60 K. The JFET is used as the

input to a differential amplifier to minimize errors due to

thermal drifts. A miniature RF relay is used to reset the inte-

grator. A mechanical relay was chosen for this application since

it was expected to be free of possible leakage paths that might

be present in a solid-state reset device.

VD- "-/.5V

iloF- IOK

Figure i. Electronics Schematic

v,
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The output of the integrator is given by:

V = A Q * G / C

where _ Q is the accumulated charge on the gate, G is the JFET

voltage gain, and C is the effective gate capacitance (including

any stray components). In order to measure G/C, we have subs-

tituted the detector with a 1.0 pF capacitor and applied a signal

through the bias line. This circuit is then a capacitive divider

with the gain given by the ratio of the standard capacitor to

(G/C). If G is taken to be unity, the effective gate capacitance

is found to be 13 pF.

The noise in this circuit has been measured with the capaci-

tor in place of a detector. Figure 2 shows a typical i0 minute

record of the differentiated integrator output. The important

u9

v
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Figure 2. Integrating Amplifier Drift
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point to note is that the intrinsic drift of the integrator is

constant to better than +/- i0 electrons/sec. The constancy of

this drift allows the JFET contribution in the dark current

measurments to be removed and allows absolute current measurments

to be made to a very low level.

The measurment cycle consisted of alternate readings taken

at zero bias to establish the inherent amplifier drift rate and

readings taken at full bias to determine the detector dark cur-

rent. The bias switch was typically done every 30 - 60 minutes.

III. RESULTS

Table 2 lists the detector characteristics and bias vol-

tages used for this series of dark current measurments. The bias

values were determined independently at photon backgrounds of

DETECTOR CHARACTERISTICS

NUMBER TYPE SIZE (MM) THICKNESS (MM) BIAS(V)

UA 3-85 SI:IN 1,0xl,0 0,5 50

UA 5-01 SI:IN 1,9xl,0 0,25 18

SBRC 704 SI:GA 2,5X2.5 0,5 15

UA 101 SI:GA 1,0xl,0 0,5 15

UA 119 SI:SB 2,5X2.5 9.5 3
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-107 ph s -I cm -2 using a TIA amplifier. The materials are

representative of high quantum efficiency extrinsic silicon

photoconductors that are currently in use. The UA 3-85 Si:In

sample was kindly provided by Dr. E. Haller of Lawrence Berkeley

Laboratory. UA 5-01 and UA i01 were fabricated at the University

of Arizona from float-zone refined crystals produced by Virginia

Semiconductor. SBRC 704 is a Si:Ga detector made by Santa

Barbara Research Center for the Spacelab II Infrared Telescope.

Finally, UA 119 is a detector fabricated from Si:Sb produced by

Rockwell for the IRAS project.

Figures 3-7 show the dark current as a function of time

after application of bias. For plots with two curves, the open

symbols represent data taken at 4.2K while the crosses show data

taken at 2.5K.
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Two conclusions can be immediately drawn from these curves.

First, settling times for the detectors at zero background are

very long, often approaching one hour. This result complicates

the use of bias boost techniques such as were applied in IRAS to

anneal radiation-induced responsivity increases. Since the re-

covery times are a significant fraction of the SIRTF orbital

time, a simple bias boost after a passage through the South

Atlantic Anomaly does not appear to be useful. Clearly, addi-

tional testing to determine the recovery time as a function of

background is in order.

Second, all the detectors show a non-zero dark current. It

is especially interesting to compare the two Si:Ga samples.

Although the two detectors have quite comparable responsivities

and quantum efficiencies, they differ in dark current by more

than an order of magnitude. This result emphasizes the need to

include dark current measurments as part of a complete detector

characterization. The dark current in the Si:In and Si:Ga

samples is temperature dependent, showing about a factor of two

decrease between 4.2 and 2.5 K. This temperature dependence

argues against both photon leak and surface conduction mecha-

nisms. The most plausible explaination for this dark current is

some hopping mechanism. The theory of hopping conduction, how-

ever, has not been applied to these very low levels.

How do these measured dark currents compare to the require-

ments for a background-limited SIRTF? The typical SIRTF appli-

cation for photoconductors will be in arrays with pixel sizes of

50 - I00 um. If the dark current scales as the detector area,

the measured values for these large discrete detectors can then
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be scaled to a hypothetical SIRTF pixel. At 12 and 20 um ex-

isting materials appear to be adequate to reach the background

limit. At the short wavelengths, where the demands are most

severe, the best si:In still falls short by almost two orders of

magnitude. If the ultimate sensitivity of SIRTF is to be

reached, additional materials research will probably be needed.

A number of questions remain unanswered by these dark cur-

rent results. First, what is the mechanism for the dark current?

The fact that very similarly performing detectors can have quite

different dark currents may be an important clue. Second, what

is the effect of various processing steps on the dark current?

This question is especially relevant for SIRTF since array fabri-

cation often involves many more processing steps than the manu-

facture of discrete detectors. Finally, is the area scaling law

really valid for this dark current? We plan to investigate this

question by fabricating small-pixel arrays for dark current

measurments.

In the course of the dark current investigation, we dis-

covered an additional, transient dark current that appears when

the detector temperature is raised. Figure 8 shows the TIA

output of detector UA 3-85 (Si:In). The detector is looking at a

500K blackbody source chopped at 2.5 Hz. The amplitude of the

chopped signal is given by the thickness of the trace. The

detector was warmed from 4.2K up to ~30K using an internal

heater. Clearly evident are two output peaks at 19 and 25K

during the warming cycle. The detector responsivity is fairly

constant during these peaks since the chopped amplitude does not
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Figure 8. Transient Dark Current for UA 3-85

change significantly during these excursions. On the cooldown

cycle, these dark current peaks are not present. We have found

that an immediate reheating will yield peaks at a lower ampli-

tude, but a long soak at 4.2K followed by a heating cycle will

produce large amplitude peaks. We have also found that this

effect is not unique to Si:In detectors, but is also present in

Si:Ga samples we have tested.

The transient dark current is likely due to the thermal

release of trapped charges in the detector. If so, this pheno-

menon may be a useful diagnostic tool for investigating the trap

states in a photoconductor.

We wish to acknowledge the assistance of Frank Low in this

investigation, and we thank George Rieke for the use of his SIRTF

background calculations. This work was supported by NASA under

an advanced detector development grant.
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PROGRESS IN THE DEVELOPMENT OF INTEGRATING JFET AMPLIFIERS

F. J. Low and M. Alwardi

University of Arizona

and

Infrared Laboratories, Inc.

INTRODUCTION

A new approach to infrared detector readout has appeared

with the development of integrating JFet amplifiers (Low, F.J.,

Applied Optics, 23, 1308, 1984). This brief progress report

includes results on the operation of commerically available

devices at a temperature of 40 K, on their sensitivity and on an

effort to develop a new Si JFet with properties optimized for

cryogenic applications. Even with presently available devices

it will be shown that for applications such as the SIRTF

photometer, MIPS, the most stringent sensitivity requirements of

noise currents as low as 1 electron/sec in less than i00 seconds

of integration can be met.

ARRAY CONCEPTS

Our current concept of a simple hybrid array is included to

illustrate how the JFet integrator may be used in modest sized

arrays. Our goal is a 16 x 16 element array with read noise <<

i0 e . The readout is non-destructive and permits the detector

array and its associated electronic component arrays to operate

at their optimum operating temperatures. This facilitates

thermal annealing of radiation effects and should eliminate

problems associated with free carrier freezeout in active Si
devices below 30 K.

INVERTING AMPLIFIER CIRCUIT

In previous work the integrating JFet has always been

operated in the source follower mode. At temperatures below

about 65 K it is not possible to operate at useful current levels

with this circuit. This is shown in the plots of Vs versus T.

Therefore we have investigated the "inverting amplifier mode"

where it is possible to optimize the operating conditions at any

temperature where the device can provide useful gain. The

circuit shown works well at 40 K with the parameters listed. The

noise tests and integrating signal tests were carried out using

this particular set of parameters. Note that we have purposely

chosen to operate with only a voltage gain of 1.2. It may prove

desirable to increase this to much higher values.
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In order to determine the effects of i/f noise on the read
noise of the single J230 integrator at T = 40K, 800 sec. of data
in 8 i00 sec. blocks was analyzed in various "integration
intervals" or "chopping periods", T The results tabulated
below show both "read noise" (_Q) and current noise (_I ) as
measured. Note that for long integrations oQ increases rather

than decreases. Further work is needed to explain this effect.

_I aQ

(sec) (e/sec) (e)

1 22 22

2.5 8.3 21

5 4.8 24

i0 3.7 37

20 2.6 52

50 1.0 50

Ol(lO0) _-- (_i(I00/_)-½

_i(I00)

(e/sec)

2.2

1.3

I.i

1.2

1.2

0.7

CONCLUSIONS

1. Operation of the "new" J230 manufactured by Siliconix at

40 K in the inverting amplifier mode is both feasible and

advantageous. Even though the transconductance is only I00 umho

both the shorted input and open gate noise levels at 1 Hz are

quite low (<i00 nanovolt/Hz^.5) and stable operation is achieved.

2. Our

electronc/sec

met.

preliminary goal of rms noise current < 1

using integration times of < 100 seconds has been

3. Opportunities for significant improvements

devices are available through improved geometries and

optimized doping of the devices.

in such

through
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Odd and Even Integrations

_O T_o : 11 + 12 ÷ 13/_

rE : 11 + 12 + 13 + 14/T

11 : JFet leakage current + temp. drift

12 : Detector dark current

13 = Sky background photo-current

14 : Signal current

Signal : iE - r°

or

I : 12 - (II + I3)/2

Fig. I. The assumption is made that the "signal" is the difference between

odd and even integrations where the even integrations include the
photo-current from the object being measured, 14. Thus current
noise as measured here refers to the rms scatter of a series of

such current differences.
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RESULTS:

T=40 K

C=10pFOR 16nV/e-

/- = 170 e-/sec

e[/ n - /n_l ] = 2.3 e-/sec

7- = 100 sec

1)F

3.2V

20 k_

8k_

VG = 25,000

1.5V

12 BIT
A/D

VD = 2 V, iD = 60 #a

p = 80 ,uW, VG = 1.2

Fig. 3. Circuit diagram for one channel of integrating preamplifier.
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Ge:Be Far Infrared Photoconductors

N. M. Haegel and E. E. Haller

Lawrence Berkeley Laboratory and

University of California

Berkeley, CA 94720

Abstract

Ge:Be photoconductors have been optimized for the 30-50 _m wavelength

range. Crystal growth of detector quality material requires good control of

both the Be and residual impurity doping. Detective quantum efficiencies of

nd= 46% at 5 A/W have been achieved at a photon background of 108 p/s.

The responsivity of Ge:Be detectors can be strongly temperature-dependent when

the residual shallow levels in the material are closely compensated.
Transient responses on the order of -1 second have been observed in some

materials. The role of residual shallow impurities on the performance of

photoconductors doped with semi-deep and deep impurities is discussed.

Introduction

Recent development of Ge:Be photoconductor material and devices has led to

the availability of optimized detectors for the 30-50 _m wavelength range.
This paper will review the crystal growth, characterization, and detector

performance of this material. The temperature dependence and transient

behavior will be examined to illustrate some of the remaining issues

concerning device behavior. Finally, a general summary of criteria for

selecting multi-level material for detectors such as Ge:Be, Si:Ga, or Si:In

will be presented.

Investigation of the photoconductive response of Ge:Be was first reported

in 1967 (1). Be is a double acceptor in Ge and is the shallowest of the

helium-like, group II impurities. Its ionization energies are 24.8 and 58 meV,

corresponding to wavelength thresholds of 50 and 21 _m (2). In addition, its

high solubility in the Ge lattice (3) makes it especially suitable as a dopant

for an extrinsic photoconductor. A schematic response for Ge:Be is presented

in Figure 1 which shows that Ge:Be photoconductors should be useful for

attaining high sensitivity in the wavelength gap between the shallow levels in
Si and the peak response of Ge:Ga.

Ge:Be Crystal Growth

Despite early encouraging results, however, the difficulties associated

with the growth of Ge:Be have, until recently, prevented these detectors from

being fully developed and utilized. Be forms a very stable oxide and can

react with oxygen present in either the silica crucible or the ambient gas in

the crystal puller. The oxygen content of the melt environment, therefore, is

a critical factor in determining whether Be will precipitate as stable and

neutral BeO or remain as an isolated dopant which is electrically active in a
substitutional site.
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Figure 1
Schematic photoconductive response for Ge:Be

Thermodynamics calculations, based on free energy of formation data and

the mass action law, can give an indication of the stability of an oxide under
various conditions of temperature, concentration in the melt, and

environment. Calculations done following the method used by Darken (4)

indicate that stable BeO would be expected to form in equilibrium under a H2

atmosphere when PHpO/PH 2 exceeds 5.5 xlO-7 for crystal growth at 1200 K
with a Be concentration ii the melt of 5x1015 cm-3 (5). Since the usual ratio of

PHpO/PHp partial pressures attained during crystal growth is approximately
10"_, tile H2 atmosphere commonly used for high-purity growth is unsuitable

for growing Be-doped crystals since the formation of BeO is thermodynamically

favorable. In addition, BeO is more stable, on a relative scale, than the

SiO 2 which composes a silica crucible. This suggests that Be in the melt

would react with a SiO 2 crucible within the limits imposed by diffusion and
convection.

Thermodynamic conditions, therefore, dictate that Ge:Be be grown in a less

oxygen rich environment. We have achieved reliable and reproducible Be doping

usinq Czochralski growth from a carbon susceptor under high vacuum
(10-6-10 -7 torr). Czochralski growth provides good control of residual

impurities and results in low dislocation densities (< 1000 cm-2) in the

single crystal material (6). Doping of the melt is achieved by using a

heavily doped master alloy. Use of a master alloy provides a more controlled
method of doping than the direct addition of pure Be. The weight of the

dopant can be determined more precisely, and a Hall effect measurement can be
used to reliably determine the Be concentration in the master alloy.
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Seven Ge:Be crystal have been grown for photoconductor material, both to
study the effects of shallow level doping and to develop a supply of material
for use in providing optimized detectors for various operating conditions.
These crystals are summarized in Table 1. OptimumBe doping for maximum
absorption without excessive hopping conductivity ranges from 5x1014 cm-3
to lx1015 cm-3 depending on the residual donor concentration.

TABLE 1.

[Be] (cm-3) Shallow Level Growth

Crystal Seed End Characterization Conditions

703 1015 NA > ND carbon susceptor,
vacuum

706 5 x 1014 NA > ND carbon susceptor,
vacuum

707 1014 NA > ND carbon susceptor,
vacuum

710 5 x 1014 ND > NA carbon susceptor,
vacuum

719 4 x 1014 Variable carbon susceptor,

H2

727 6 x 1014 NA > ND carbon susceptor,
vacuum

728 1015 Variable carbon susceptor,

H2

Material Characterization

Schematic band diagrams for Si:In and Ge:Be (showing only the first

ionization stage for Ge:Be) are given in Figure 2. Ge:Be, as well as Ge:Hg,

Ge:Zn, Si:Ga, Si:In, etc., can be referred to as "multi-level systems" because
there will be additional shallow levels (B in Si, B and Al in Ge) present in

the bandgap which will affect the photoconductor performance. Variable

temperature Hall effect and resistivity measurements are necessary to
determine the concentration and compensation of the residual shallow levels in

such materials (7).
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Figure 2

Schematic band diagrams for Si:In and Ge:Be
indicating the presence of residual shallow acceptors

The free carrier concentration as a function of inverse temperature and

the corresponding resistivity data are plotted in Figure 3 for a number of

Ge:Be samples with varying compensation and concentration of residual shallow

impurities. The experimental techniques for controlling these residual
shallow levels will be discussed in a later section.

Detector Performance

Ge:Be detectors have been evaluated for responsivity and NEP as a function
of bias and temperature at a background flux of 1.5x10 _ photonslsec (8).

Narrow-band filters, consisting of Fabry-Perot and restrahlen salt filters

(9), were used to restrict the photon energy to within * 1 _m of 42 _m, and

the detectors were tested in brass integrating cavities. Results are

summarized in Figures 4 and 5. The comparison to Ge:Ga was performed with

each detector operating at its optimum temperature, as determined by optimum

signal to noise ratio.

The best result obtained to date for Ge:Be detectors is a detective

quantum efficiency ((NEPexplNEPblip) 2) of 46% with a responsivity of 5
A/W. One sees from Figure 4 that the value of NEP does not vary greatly for

the different materials tested, except at the lower bias where Johnson noise

of the feedback resistor becomes significant. Under these conditions, highest

responsivity will result in lowest measured NEP. The difference in

responsivity in the various materials is due to the difference in free carrier

mobility resulting from differences in Be concentration.
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Free hole concentration and resistivity as a function of inverse

temperature for the following Ge:Be materials:

+ Ge:Be 728-4.3 As grown

x Ge:Be 728-4.3 Annealed 75 minutes/600*C

o Ge:Be 728-4.3 Annealed 90 minutes/660*C

Note the increase in resistivity of the fully annealed material.
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The improved performance of the LBL Ge:Be as comparedto Ge:Gahas been
confirmed in the use of these detectors in aircraft-based astronomy. These
detectors have been flown on the Kuiper Observatory in a far-infrared grating
spectrometer (J. Houck et.al., Cornell University (10)). They report an
inprovement of a factor of 2-3 in NEPover the Ge:Gathat was previously used
to cover the Ge:Be wavelength range.

Temperature Dependence of Responsivitx

The data in Figure 4 indicate that the responsivity of Ge:Be can be

strongly temperature dependent. The responsivity increases over an order of

magnitude as the device temperature is raised from 2.5 to 4.2 K. A

responsivity increase, under fixed bias for a given intercontact length L,
must be due to either an increase in free carrier mobility or lifetime. This

temperature dependence, however, is much stronger than would be predicted

based on the temperature dependence of the lifetime as given by the cascade

capture model (11,12) or the well characterized scattering mechanisms that
determine mobility (13).

Such strong increases in detector responsivity with increasing temperature
have been predicted for the case of multi-level semiconductors in which the

shallow acceptors are closely compensated, i.e., NA(shallow):ND (14,15).
An increase in free carrier lifetime can occur when thermal ionization from

the shallow levels becomes strong enough that these centers no longer act as

effective recombination centers. The temperature at which this increase in

lifetime will occur is given approximately by:

EA
T =

Nv
c k In(_-_)

where EA is the activation energy of the shallow level dopant, p is the free

hole concentration, Nv is the valence bang density of states, g is the
degeneracy factor, and k is Boltzmann's constant.

The models predict however, that the maximum responsivity which can be
obtained is strongly dependent on the exact compensation of the shallow

residual impurities, and that variations of 5-10% in the quantity [NA-ND]
are sufficient to change the maximum responsivity by over an order of

magnitude. For this reason, special attention must be given to ways to
achieve very close compensation of residual levels if this enhanced

responsivity is to be achieved consistently and reproducibly in a large number
of devices.

One way of obtaining close compensation of shallow levels is to use a high

purity crystal growth facility and, if necessary, to counterdope, generally
with the n-type impurity. In Ge, residual impurities can be controlled to

levels of -1010 cm-3 under optimum growth conditions (6), while high

purity Si generally has [B] and [P] ~ 1013 cm-3. The high responsivity

values shown for the Ge:Be detectors in Figure 5 were all attained in crystals

in the as-grown condition, without intentional counter-doping.
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A second approach, which has been used to achieve close compensation in
Si, is neutron transmutation doping (16). NTDis used to provide uniform
doping (Si,P) and can be done in a controlled mannersince the concentration
of P produced is directly proportional to the fluence of thermal neutrons to
which the sample is exposed. This technique could also be used in Ge although
the process would be less efficient since the transmutation of Ge leads to the

production of both donors and acceptors with a fixed compensation ratio of

ND/N A - 0.4 (17).

A third method, which is presently being evaluted as a means of obtaining

closely compensated material, is to control the concentration of

hydrogen-related impurity complexes such as A(Be-H) and A(Zn-H) (18,19).
These shallow acceptors, which are present in the as-grown state of crystal

grown under a H2 atmosphere, can be removed with thermal annealing at
temperatures of 500-700°C. The effect of this is seen in the Hall effect data

of Figure 3 where different annealing treatments were used to obtain a variety

of degrees of compensation of the shallow levels. With the proper choice of

annealing treatment, very close compensation of the shallow levels can be

achieved. Evaluation of photoconductors made from these various materials is

in progress.

Transient Response of Ge:Be Photoconductors

In an idealized photoconductor model, neglecting all space charge and
contact-related effects, the transient response of the device will be limited

by the free carrier lifetime, which is generally on the order of 10-9 to

10-6 sec for Ge detectors at low temperatures. Other models, supported by

extensive experimental data, also show that, for large photoconductive gain

and high electric fields, detector response can be limited by the dielectric
relaxation of space charge regions near the contact which are created by

initial sweep-out conditions (20,21). In practice, however, some very long
time constants, on the order of seconds, are observed to characterize some

fraction of the total photoconductive response in many detectors. Usually

this is a very small part of the total signal and the ac and dc responsivities

do not vary greatly for frequenices less than the dielectric relaxation

frequency.

In the Ge:Be detectors, however, as well as in the Ge:Zn detectors, we

have observed time constants on the order of seconds, where the slow component

of the signal is up to 10 times greater in magnitude than the initial fast
component. This is illustrated in Figure 6 for a Ge:Be detector as a function

of increasing temperature for a fixed bias. The data has been compiled

schmatically in Figure 7 to show how the absolute and relative magnitude of

the slow component increases with increasing device temperature.

Several experiments have clearly demonstrated that this slow component is
not a dielectric-relaxation time controlled behavior. First, the dielectric

relaxation time constant, pc¢o, can be calculated directly from the measured
detector resistance and is found to be on the order of 1-10 msec. This is two

to three orders of magnitude faster than the time constant of the observed
behavior. Secondly, the time constant of the slow response is temperature-dependent,

but is not affected by photon-induced changes in background free hole

concentration, i.e., it is not dependent on material resistivity. Finally,
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the fast component of the signal does not saturate with increasing field as

one would expect for dielectric relaxation.

From this evidence, we conclude that the slow transient response we

observe is not explained by any of the present models for transient phenomena

in photoconductors. We believe that the slow response may be associated with

changes in the electric field profile inside the device due to slow changes in

the space charge distribution in the near-contact region. In this region,

free holes from the implanted contact diffuse into the bulk material. They

are trapped by ionized acceptors and create a space charge region which

determines the near-contact profile of the electric field. Steady state
solutions for a theoretical model which includes the effects of contacts and

space charge have recently been published (22). Progress has been made on the

solution of the time-dependent response and the results from this model will

be compared to the Ge:Be experimental results (23).

Material Selection for Multi-level Photoconductors

Because of the large role that residual shallow levels play in determining

the performance of a multi-level photoconductor, the selection of optimized

material for detectors such as Ge:Be or Si:Ga requires full characterization

of the material with regard to both primary and residual dopants. In addition

to the standard compromises (speed versus responsivity, high _ versus hopping

conduction, etc.) one must also determine, based on the temperature of device

operation and the background flux levels expected during observation, whether
enhanced responsivity due to close compensation is a desirable goal. An

attempt has been made in Table 2 to consider the factors involved in material
selection of mu]ti-level materials.

One sees that the shallow levels will determine both the responsivity and

the thermally generated current which will be present in the absence of a

photon flux ("dark current"). Routine crystal growth, without counterdoping

or NTD, will generally lead to the case NA(shallow)>N D in both Si and Ge.
This is usually undesirable with regard to both responsivity and dark current

for the case of very low background astronomy. In compensated material, very

high resistivity values can be obtained (see Fig. 3). A combination of
materials characterization and dark current measurements on actual devices

will be required to determine if observed dark currents at low temperature are

material related or due to other effects such as surface leakage.

Finally, an example will illustrate the use of Table 2. Consider a Si:In

photoconductor being developed for a low background (p-lO 8 p/s) space

application on a focal plane at T=3.0 K. It is generally true that float-zone

Si (the technique used to produce Si:In) has a net shallow acceptor

concentration due to the presence of residual boron. Boron is hard to remove

from silicon because it has a segregation coefficient very close to one.
Perhaps, because of the low background and small signals, one desires to have

as high a responsivity as possible in order to overcome some fixed level of

background noise, such as electronics related noise. Finally, suppose the

resistivity in the as-grown case is sufficiently high at 3.0 K to eliminate
measurable dark current noise.
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TABLE 2

Material Selection:

Shallow Level Compensation

ND >> NAs ND > NAs NAs > ND NAs >> ND

Highest p

Lowest dark current

High p

Low dark current

Lower p

Higher dark current

Lowest p

High dark current

1

1 1 R=ND+PR =N"DD R =N'DD for T <Tc

R = exp(-EBlkT ) for T > Tc

where Tc =
EA

k In(_)

To determine if one should counterdope (i.e., add donors) to attempt to

achieve NA-ND, one should calculate the temperature at which the lifetime
increase due to exact compensation will occur. In this case, for p=_ = 103 cm-3

and E=45 meV for B, Tc= 17 K. Thus, the focal plane temperature is so far

below Tc that the responsivity will be given by

R - 1IN D

and the addition of counterdopants would be detrimental rather than beneficial

to achieving high responsivity. If, however, the resisitivity of the as-grown

material was not high enough to eliminate dark current effects, then

counterdoping would be required, with some sacrifice in responsivity.

Analysis of similar cases in Ge might lead to other conclusions because the
shallower levels in Ge means that enhanced responsivity can be achieved at

lower temperature for a given flux.
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Conclusions

The performance of Ge:Be in the 30-50 _m wavelength range has been

reviewed and shown to be superior_to the Ge:Ga detectors which have previously

been used in this application. The use of Czochralski growth from a carbon

susceptor under high vacuum has been effective in achieving reliable crystal
growth and in avoiding the precipitation of Be as stable BeO.

Shallow residual impurities are present in all extrinsic photoconductors

based on semi-deep and deep levels (Ge:Be, Ge:Hg, Si:Ga, Si:In) and affect

both the resistivity and responsivity of the devices. Enhanced responsivity

can be attained in these materials if the shallow levels are closely

compensated and the device is operated at sufficiently high temperature.

Choices of optimized material for detectors will depend on the resistivity and
responsivity required for a particular astronomy application.
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N87-13710
Detectorsystems for IS0's Photometer ISOPHOT

J. Wolf, D. Lemke, M. Burgdorf, D. Lutz
Max-Planck-Institut f_r Astronomie

Heidelberg, West Germany

I. Introduction

One of the four focal plane instruments of the Infrared Space

Observatory is ISOPHOT, a photopolarimeter for the wavelength

region 3 - 200 _m, with D. Lemke as principal investigator.
Each experiment occupies a quadrant of the focal plane ( see

fig.l ). The telescope beam is directed into each experiment

by means of a pyramid mirror and by tilting the satellite.
The diameter of the unvignetted field of view is 3 arcmin or

7.85 mm in the focal plane ( 1 mm = 23 arcsec ).
The temperatures provided are 3 K for cooling the detector

systems and 8 K for the experiment structure.

2. The IS0PHOT experiment
w

The ISOPHOT team is a European consortium of nine groups from
four countries ( see fig.2 ). The PI-institute is the Max-

Planck-Institut fHr Astronomie in Heidelberg, where most of the

cold focal plane unit will be developed and all the detector
developments are made or managed.

ISOPHOT consists of four photometric subsystems:

ISOPHOT - P, a classical mulitband-multiaperture photopo-

larimeter, 3 - 30 _m,

ISOPHOT - C, a photometric camera , 30 - 200 _m,

ISOPHOT - S, a spectrophotometer, 3 - 16 _m,

ISOPHOT - A, two ( or three ) linear mapping arrays,

3 - 18 ( or 30 ) _m.
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Table l ISOPHOT-P (Multiband-Multiaperture Photopolarimeter)

Wavelength range (pm)

Total number of spectral bands

Central wavelength (Mm)

Spectral resolution

Total number of apertures

Field of view (arc sec)

Polarization measurements

Hin. detectable flux I) (m3y)

Photometry

4 Mm 2)

25 _m 3)

Polarimetry

4 pm 2)

25 pm3)

3 ..- 30

I0

4, 6-5, I0, 16, 25, others TBD

2.5, 2.5, 2.5, 2.5, 2.5, others TBD

15

5, 8, 12, 20, 30, 40, 60, BO, ii0, 150,

180, others TBD

3 grid polarizers with 0O, 600 , 1200

0.18

5.0

0.44

12.4

Integration time i00 s; S/N : I0; broadband filter

2 NEP = 5.10 -18 W-Hz-I/2

3 NEP = 3.i0 -I? W.Hz-I/2

Table Z ISOPHOT-C (Far Infrared Camera)

Wavelength range (pm)

Pixels

Broad bands,

Central wavelength (Mm)

Broad bands, A/A_

Narrow bands,

Central wavelength (Mm)

Narrow bands, _/_

Min. detectable flux I) (m3y)

Photometry

Polarimetry

Polarisation Measurements

Array I Array II Array III

30 ... 60

4 x4

45

2.5

60 ..- 120

3 x 3

90

2-5

75 , 105

4

120 ... 200

2 x 2

160

2.5

35 , 50

4

21

52

32

80

140 , 180

140

350

3 grid polarizers with 0O, 60 O, 1200

i Integration time i00 s; 5/N : i0; broadband Filter
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Table 3 ISOPHOT-S (Spectrophotometer)

Type

Wavelength range (pm)

Channel I Channel II

Ebert-Faatie

3.3 ... 6.6

Ebert-Fastie

8 ... 16

Spectral resolution

Field of view (arc sec)

(slit size)

Elements

Efficiency

Hin. detectable flux I) (m3y)

81

8

64

0.2

3_ (5 _m)

96

8

64

0.2

250 (I0 vm)

i Integration time I00 s; S/N = I0

Table 4 ISOPHOT-A (Mapping Arrays)

Operation mode: 3 linear arrays measure simultaneously; scanning by

telescope motion• Channel Ill is an option.

Detector material

Central wavelength (pm)

Spectral resolution

Elements

Pixel size (pm 2)

FOV, pixel (arc sec 2)

FOV, array (arc min)

Gap between pixels I) (arc sec)

Min. detectable Flux 2) (m3y)

Channel I Channel II Channel III

Si :In

4.2

1.5

32

200 x 200

Si:Ga

II

1.4

16

400 x 400

_.6 x 4.6

2.8

0.7

0.4

9.2 x 9.2

2.8

0•7

Si:P

22

1.8

8

800 x 800

18.4 x 18.a

2.8

0.7

12

I If staggered arreys are selected there is no gap.

2 Integration time 100 s; S/N = I0

More detail of the subsystems is given in tables 1 -4. The

mechanical and optical layout is shown in fig.3.
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One out of the four subsystems !_,_elected by a wheel, which

carries various mirror_, field optics, apertures, spectral
filters and polarizers'. Polarization measurements are

possible in all subsystems except - S because of its higher

instrumental polarization.

The three identical wheels ( fig.4 ) are driven by ratchets

which were developed and fully tested in the GIRL project.

They proofed to be very reliable under long term cryovacuum

tests and vibration tests according to the shuttle conditions.

The advantages of these ratchet drives are their simplicity

and their low heat dissipation ( 2.5 mW per step in the labo-

ratory modell of GIRL E2 ). The wheels are self positioning

with high accuracy.

\

wEw Z

I

\
\ /

Lenses ÷ filters

\

i

/

/
/

/
i

//

Figure 4
The rachet wheel III of IS0PHOT - P.
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3. Detectors for ISOPHOT

Discrete detectors ( Si:In, Si:Ga and Si:P ) with the classi-
cal trans-impedance-amplifier will be used in ISOPHOT - P.
Monolithic arrays ( Si:In, Si:Ga and possibly Si:P ) will be
used in ISOPHOT - A and - S, and hybrid Ge:Be-, Ge:Ga- and
stressed Ge:Ga-arrays will be used in ISOPHOT - C.

Table 5 shows some examples of detectors available in Heidel-
berg. We found excellent sensitivities with the Si:In and
Si:Ga arrays, but cross talk effects up to 30 % to the next
pixel were found at very low photonbackgrounds. New arrays
with different geometry and layout to reduce this cross talk
are currently manufactured.
Table 5
Detectors available at Max-Planck-Institut fur Astronomie

TYP SERIAL-RUMBER MANUFACTURER QB RF REP R AMA x

[PH S-I CM-2 ] [OHM ] [ W HZ-I/2 ] [A W -i] [ p M ]

ST:IN NC 5 ARRAY AEG-TFK 2.3 107 1,2 i0I0 4,7 i0-IB (?) 40 5

IR-8 BP 1242 ARRAY AEG-TFK 5.0 108 1.1 1010 5.0 10"17 (?) 8.2

SI:GA C 230 - 3 SBRC 3.5 I07 1.5 i0I0 3.5 10"17 3,0 17

C 230 - 4 SBRC 2.0 108 7,6 109 1.6 10"16 2.3

C 230 - 11 SBRC 2.5 108 7.6 109 1.0 10"16 3.1

DS 64 BATTELLE 2.1 107 1.5 i0I0 4,5 10"17 2.0

ARRAY AEG-TFK 2.5 108 1.2 i0I0 9,0 10"18 (?) 36

ST:As C 230 - 5 SBRC 6.9 108 7.7 109 1,6 i0"16 9.q 24

C 230 - 10 SBRC 4.4 108 7.6 109 1,2 10"16 2.5

C 230 - 12 SBRC 6.9 108 3.1 109 9.5 10"17 8.7

SI:SB C 230 - 7 SBRC 7.2 10B 3.i 109 7,9 10-17 4.8 29

C 230 - 9 SBRC 5,8 108 7.6 109 1.2 10"16 3.9

Sx:P 1 BATTELLE 2.8 107 2.0 i0I0 3.0 10"16 2.5 25

2 BATTELLE 3,5 107 1.5 i0I0 2,1 10"17 8.6

GE:BE

GE:GA

GE:GA:CU

GE:GA

STRESSED

HGCDTE

K 9 C Ii BATTELLE 2.0 108 1.2 I0I0 7,0 10"17 2.0 45

IRL I01 IRL 2.2 108 1.5 i09 1,3 10-16 4.3 i00

IRL 102 IRL 4.4 108 7,9 I09 3.1 10-16 2.7

IRL 107 IRL 2.2 108 1.5 1010 6,0 10-17 6.7

DS 47 BATTELLE 2.2 108 1,5 i0I0 1.2 10-16 1.9

IRD 2071 UNIV. OF ARIZONA 2.2 108 1.5 109 1,7 10-16 6.6

UNIV. OF CALIF, 1.7 108 2.0 iOlO 3.0 10-17 26.0 i00

BERKELEY, LBL

G5E-2.1 BATTELLE 1,5 103 2,5 i0i0 6.0 i0-17 2.0 )C _192

G5E-2.2 BATTELLE 1.5 108 1.4 i0I0 3.0 10-17 4,5 _C_184

AEG-TFK 2.3 108 1.1 10-13 12

_ = PHOTON BACKGROUND: _ MAX = PEAK RESPONSE: F = I0HZ CHOPPERFREOUENCY: T = 2,0 .., _,2 K

_C = CUT-OFF WAVELE_IGTH
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In order to extend the wavelenath coverage up to 200 um,
a region which was not explored by IRAS, we will use stres-
sed Ge:Ga detectors. The sensitivity of such a detector which
is stressed to a cut-off wavelength of 192 _m is shown in
fig.5. Its reliability and reproducability nave been shown in

many cold-cycles.Four of these detectors will be arranged in

a 2 x 2 hybrid array for ISOPHOT - C ( see fig.6 ).

Figure 5

NEP and responsivity
of a stressed Ge:Ga

detector.

<

n-

I0

N

-r

m lO-_e

GeGo stressed

Battelle GSE-2.1

Oa= 6.4.107ph • sl-cm -2

10-15w• s = 2.5- ,, /

! I

100 200 300

Bias [ mV]

/, -\

/. !\

\ /
I •

Ge : Be Ge : Ga Ge : Ga

stressed

FiGure 6

The four hybrid arrays of ISOPHOT - C. The outer circle shows
the diameter of 3 arcmin field of view, the smaller circle

defines the Airy disk at the cut-off wavelengths of the

detectors.
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Similarily Ge:Ga detectors will be arranged in a 3 x 3 element

array and Ge:Be in a 4 x 4 matrix. The small number of pixels

in these cameras is due to the large Airy disks at these long
wavelengths and the relatively small unvignetted field of
view.

The possible use of field optics in front of the IS0PHOT - C

arrays, e.g. light pipes, is investigated currently. The

mosaics in fig.6 would represent the light entrances then. The

detectors could then be considerably smaller, beeing less sen-
sitive to ionizing radiation.

Radiation effects have already been investigated. Responsivity
increases up to 30 % after a 2 hour irradiation with _- rays

( 0.03 mrad per sec. ) were observed and could be cured by
flashing the detector for a few minutes with near infrared

radiation. For ISOPHOT it is anticipated to flash the detec-

tors through a fibre optics. The light source can be arranged
outside the cryostat then avoiding helium losses.

4. Read-out circuits

The restricted number of 60 cables available for ISOPHOT and

the very low heat dissipation of I0 mW average, enforces the

use of cold multiplexers for the array detectors.

Our basic concept is the use of charge coupled devices. We

have successfully tested them at 4.2 K and investigated their

properties. One example is shown in fig.7.

 nnnuuannnm
mmmmmmmu_ 

 RmBgRm Bm 
I  NNNNNN NINmNN |

timmlImma,,,,,..,.,amm
maim am_mm

|muuu uunnuj mimlanm,  m
lmNNeM__.-Jmmmm 
mmmnmmmmm

FiGure 7

A Si:P detector was coupled to a CCD at 4.2 K. A l0 Hz chopped

IR-signal of 3.3 i0 -Iz W was applied at a bias voltage of 7.5 V.
The photon background of the detector was 3.9 l0 _° Ph s-_ cm -z

and the CCD read-out frequency was 1 kHz. The lower trace
shows the output signal with 0.5 V/div.
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A discrete Si:P detector was coupled to a CCD. The NEP
achieved is nearly two orders of magnitude higher than with
the TIA, due to read-out noise of the CCD, which was found to
be _ 3000 electrons. It should be mentioned, that the CCDs we
used so far, were not optimized for low background astronomi-
cal applications. The high read-out noise at 4.2 K is conside-
red to be due to a large number of traps at the Si/Si0z inter-
face and is possibly generated at the input and output stages.

New custom made CCDs are currently under development. The
density of the traps will be reduced by special manufacturing
technologies and their total number will be reduced by smaller
CCD channels. Noise sources at the input and output stages

should be avoided by using diffused contacts with higher

doping concentration instead of ion implanted contacts.

As an alternative concept a direct read-out system based on

switched MOSFETs is beeing considered. Investigations on the

behaviour of MOSFETs at LHe-temperature have been started and

an industrial study for such an integrated transistor array is

in preparation.

5. Status of the experiment

The ISOPHOT experiment was approved by ESA in June 85. All

proposed subsystems were accepted and moreover our own option

of using a third mapping array ( Si:P which is not in our

baseline proposal due to costs ) in ISOPHOT - A was strongly

recommended by the evaluation panels.

Several options concerning IS0 itself are currently discussed
between ESA and the ISOPHOT team. A major point is the inclu-

sion of a chopping secondary in the IS0 telescope.

The definition phase of ISOPHOT will last until the end of
1986. The hardware phase C/D will start in January 1987. In

this phase the major activities will be turned to industry.

Except for minor contributions, funding for the experiment is

approved and certain in all participating countries.
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N87-18711

STATUS OF NTD Ge BOLOMETER MATERIAL AND DEVICES

E. E. Hailer, N. M. Haegel and I. S. Park

Lawrence Berkeley Laboratory and

University of California

Summarx-Abstract

This status report is a direct follow up to the presentation given at the

first IR Detector Technology Workshop which took place at NASA Ames Research

Center on July 12 and 13, 1983 (1). The conclusions which we presented at

that meeting are still fully valid. In the meantime we have learned more

about the physics of hopping conduction at very low temperatures which will be

important for bolometer design and operation at ever decreasing temperatures.

Resistivity measurements have been extended down to 50 mK. At such low temper-

atures, precise knowledge of the neutron capture cross sections _n of the

various Ge isotopes is critical if one is to make an accurate prediction of

the dopant concentrations and compensation, and therefore resistivity, that

will result from a given irradiation. We describe an empirical approach for

obtaining the desired resistivity material and are in the process of conducting

a set of experiments which will improve the knowledge of the effective on

values for a given location in a particular reactor. A wider range of NTD Ge

samples is now available. Noise measurements on bolometers with ion implanted

contacts show that no 1/f noise component appears down to 1Hz and probably

lower.

1. Introduction

High performance bolometers for far infrared, low background applications

(2) typically utilize a semiconductor thermistor and are operated at very low

temperatures (T < 4.2 K). At such temperatures, the electrical conductivity
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of a doped and compensatedsemiconductor is dominated by the hopping mechanism:

charge carriers tunnel from occupied to empty energy levels in the semiconduc-

tor bandgap. The hopping mechanismis thermally activated and depends exponen-

tially on the hopping distance, which in turn depends strongly on the dopant

concentrations and the compensation. The majority dopant provides the tunnel-

ing charge carriers whereas the minority dopant creates the empty majority

sites due to compensation.

Incorporation of dopant impurities during growth of a semiconductor crystal

from a melt typically leads to impurity concentration fluctuations which are

called striations. At roomtemperatures these striations may lead to macro-

scopic fluctuations of the electrical conductivity of a few percent. In the

hopping conduction regime these variations becomemuchmore important and

local variations of several orders of magnitude in resistivity are not

uncommon. The problem becomesworse as the temperature is lowered.

A muchmore uniform dopant distribution can be achieved with the neutron

transmutation doping (NTD) process (3). This technique is based on the decay

of a host crystal isotope into a dopant impurity after capture of a thermal

neutron. Nuclear reactors are used as the source of thermal neutrons. The

NTDprocess has been developed commercially for doping silicon with phosphorus

donors for high voltage, high power devices. No acceptors are created in Si

by NTD. This makesthe process useless for doping Si for bolometer

applications. Germanium,in contrast, contains isotopes which decay into

acceptors as well as isotopes which decay into donors. Table 1 contains the

information on the NTDreactions which are relevant for doping. The

transformations of one Ge isotope into another stable Ge isotope are not

listed. Becausethe natural isotopic abundanceof a given element is fixed,

the dopant concentration ratios and the compensation will be fixed as well.
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2. Low Temperature Conductivity of NTD Ge

Since the last workshop, a number of new NTD Ge samples have been pro-

cessed. Two groups have made electrical conductivity measurements down to

- 250 mK and ~ 50 mK. Figure 1 displays the results obtained by E. Kreysa,

MPI Bonn, using five of our NTD Ge samples. Figure 2 shows the results obtain-

ed by J. Krause, Lake Shore Cryotronics, Inc. The excellent fit of straight

lines to the results displayed as an Arrhenius plot with modified temperature

dependence (l/T)½ supports the theoretical model of Shklovski and Efros (4)

for low temperature hopping conduction. Their model leads to the following

resistivity dependence:

p = c exp(A/T)½ Eq. (1)

The constants c and a in Eq. 1 can be theoretically estimated. The accuracy

is, however, not sufficient for useful predictions of the resistivity in the

temperature range of interest. Table II contains the experimentally deter-

mined preexponential factors c and the exponent constants A for the various

samples. The measurements done by J. Krause on our NTD sample No. 12 do not

permit the determination of c because the precise geometry of the Ge samples

was not known. The deviations of the data at very low temperatures from the

hopping conduction as described by Eq. 1 are currently attributed to resistive

heating of the devices. Further measurements are required to verify this

point. The resistivity dependence given by Eq. 1 is asymptotically approached

at low temperatures and represents the ultimate low temperature dependence.

All of our samples give results which are well described by Eq. 1 over several

orders of magnitude which means that resisitivity values can be predicted

accurately to much lower temperatures. This is useful for the design of

bolometers to be operated at even lower temperatures.
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Modified Arrhenius plot of the resistivity and the temperature of

five neutron-transmutation-doped Ge samples. The excellent fit of

straight lines to the experimental points supports the law describ-

ed by Eq. I.
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Figure 2.
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Modified Arrhenius plot of the resistance and the temperature of
three resistors fabricated from NTD Ge sample No. 12. The devia-

tion of the experimental data from the straight ]ine is assumed to

be due to self heating.
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Figure 3 showsthe range of resistivity and temperatures for which we cur-

rently have NTDGe samples. Weare interested in collaborating with groups

who are interested in studying someof the samples, particularly at tempera-

tures below 1 K.

3. Thermal Neutron Capture Cross Sections

The concentrations of the dopants obtained by the NTD process depend on

isotopic abundance, neutron flux and the neutron capture cross sections.

While the first two parameters are known to high precision, the value of the

latter parameter shows large fluctuations from one reference to another.

Table Ill summarizes cross sections o for the relevant Ge isotopes from four

reference sources. The difficulty in obtaining accurate values for o lies in

the fact that a is an integral over the neutron energy dependent differential

cross section do/dE. It appears difficult to obtain a perfectly "thermal"

neutron energy spectrum with which a precise value of a can be determined.

Even if this could be achieved, it would be of little help to the experimenter

who wants to dope a crystal at a given reactor which may not produce a perfect-

ly thermal spectrum. From our experience with work done at the Missouri

Research Reactor we find that NTD done always in the same location leads to

reproducible results. A number of closely spaced neutron exposures will

Ubox-in" the range of interest. One to two iterations have always been

sufficient to create material with the required properties.

We are in the process of determining experimentally the neutron cross

sections by measuring the net-carrier concentrations as a function of time

after neutron exposure. The total exposure time for the NTD is negligibly

short compared to the decay times of interest. Since the various dopants are

produced with very different time constants, it is possible to observe the
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NTD Ge in the range between #1 and #12 are currently available.

More heavily doped samples (up to #25) are being processed.

generation of the arsenic donors (TI/2 = 82.2 min) almost independently of

the gallium acceptors (T1/2 = 11.2 d) and the selenium double donors

[T1/2(dominant ) = 38.8 hrs]. Figure 4 shows the dependences of the dopant

concentrations as a function of time calculated for the cross sections

reported in Ref. 1 of Table Ill. The net dopant concentration N = NGa - NAs -

2Nse is shown as well. The selenium concentration is counted twice because
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The evolution of the Ga, As and Se concentrations as a function of
time after a brief neutron irradiation cycle. The net-dopant con-
centration is shown as well. Cross sections given in Ref. I in
Table Ill have been used.

each selenium double donor gives up two electrons to compensate two shallow

gallium acceptors. The maximum of N on the n-type side occurs after 9.6 hrs

and it reaches 96% of the ultimate arsenic concentration. After ~ 8.2 days, a

type change occurs from n to p. After several half lives of 71Ge creating

71Ga, one reaches the ultimate net-acceptor concentration. Figure 5 shows

how sensitive the net-dopant curve is to changes in cross sections. Depending

on the set of cross sections, the time for the change of type changes from

- 8.2 days (K = 0.40, Ref. 1, Table Ill) to - 6.3 days (K = 0.32, Ref. 2,

Table Ill). The net-dopant concentration changes as well. The change of type

occurs at a certain time, to, independent of the total neutron flux. This

provides an additional restriction for a set of experimental curves. They all

must cross on the x-axis at to. Thermal annealing of the residual fast
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Figure 5. The cross-over time from n- to p-type is very sensitive to the par-

ticular set of neutron cross sections. An experimental study of
the net-carrier concentration as a function of time will determine

whether the curve labelled with compensation K = 0.4 (Ref. 1 of

Table Ill) or with K = 0.32 (Ref. 2 of Table Ill) or neither is

appropriate for the reactor used in our case.

neutron radiation damage after irradiation can introduce rapidly diffusing

impurities such as copper, a triple acceptor. When the Cu is in a substitu-

tional position, the crossing point of the experimental curves will be offset

to the p-type side if Cu contamination occurs. We are currently in the process

of generating such curves to extract a much more accurate set of cross section

values for a particular reactor.

4. Conclusions

Experimental and theoretical results show that NTD Ge can be used suc-

cessfully as bolometer material down to 50 mK and most probably much lower.

Predictions of resistivity at lower temperatures can be made with good accur-

acy because the law described by Eq. 1 is of asymptotic nature at low
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temperatures. Despite the small dependenceof the neutron capture cross sec-

tions of the various germaniumisotopes on the neutron energy spectrum, one

can achieve predictable doping by first "bracketing" the target neutron flux

range and then using the samelocation in a given reactor for further doping

cycles.

The question of heat capacity, Cv, of NTDGe at very low temperatures

has not been addressed. It seemsprobable that at very high doping levels and

very low temperatures, deviations from the simple Debyelaw [Cv a(T/e) 3] must

be expected. In the case of NTDGe the effect of the dopants is expected to be

very small because the massesof the dopants fall inside the range of the

massesof the stable Ge isotopes. No local vibrational modesor broad

resonances will be created. Weconclude from this that in NTDGe the effect

of dopants on the heat capacity must be muchsmaller than in a case where

dopants of very different massfrom the host crystal are introduced via dif-

fusion or ion implantation. This latter case applies, for example, to silicon

bolometer material. Careful measurementsat very low temperatures will be

required to explore this issue.
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71

;2°Ge(n,Y) ,2Ge _ 3,Ga

7_

32Ge(n,v ) 7s e 7s
3_Ge _ 33As

76G 77 B- 77 B-

_Se

TABLE If.

Neutron Flux Preexponential

Factor c

5 7.50 x 1017

6 1.88 x 1018 0.50

I0 9.25 x 1017 0.15

11 1.65 x 1018 0.20

12 3.33 x 1018 O. 20

12** O.20

Dev. 1

Dev. 2

Dev. 3

Exponent

Factor a

80.10

30.84

72.54

40.27

6.25

5.48

5.20

5.06

*Data from E. Kreysa, MPI, Bonn.

**From the resistance measurements of j. Krause,

Lake Shore Cryotronics,, Inc.
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TABLE III. SUMMARY OF PUBLISHED CROSS SECTIONS (in barns)

On(_°Ge) On(?_Ge) On(?6Ge) K = NAs + 2NSe
NGa

3.46 0.62 0.36 0.40

3.25 0.52 0.16 0.32

3.20 0.50 0.20 0.33

3.68 ± 0.8 0.65 m 0.2 0.20 m 0.03 0.35

Ref.

1

2

3

4

1H.C. Schweinler, J. Appl. Phys. 30, 1126 (1959).

2Table of Isotopes, 7th ed. (1978).

3Table of Isotopes, 6th ed. (1967).

4"Neutron Cross Sections", BNL-325, 2nd ed., No. 2 (1966).
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Abstract

We have built and tested bolometer elements using NTD
germanium and ion-implanted Si thermometer elements. The thermal

links were made using aluminum wires and NbCxNy coated carbon
fibers.

The temperature dependence of the detector resistance, lead

thermal conductivity, and heat capacity were measured. The

dependence of the detector resistance on applied electric field

was also measured. This, combined with the current-voltage curve

for the detector, allows us to calculate the detector

responsivity.

We then deposited known amounts o_energy into the detector
by allowing X-rays from the decay of -DFe to be thermalized in

the detector. In the best-measured case, the predicted pulse

height/measured height was 1.04 + .05.

The noise at frequencies above 25 Hz in the NTD Ge was near

that predicted by thermodynamics. The noise below 25 Hz has a

I/f character and may be in the carbon fiber/bolometer junction.

The implanted detectors show some i/f noise which depends on the

total thermometer volume. Comparison between noise measurements

and theory will be presented.

iAlso Department of Physics and Astronomy, University of

Maryland.
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Introduction

Thermal detectors operating at very low temperatures (T

0.3K) can be made to operate as excellent infrared detectors. In

principle it is possible to produce detectors whose sensitivity

exceeds the limits set by statistical fluctuations in the photons

emitted by the natural celestial backgrounds over moderate

bandwidths. Alternatively, similar detectors can be used as
microcalorimeters to measure the energies of individual X-ray

photons. The predicted energy resolution of such a device,

limited only by thermodynamic noise sources, is extremely good
(Moseley, Mather & McCammon, 1984; hereafter MMM).

We have tested two thermal detectors at T _ 0.3K. The

purpose of the tests was to i) determine whether the simple

thermodynamic noise model of Mather (1982) accurately predicts

the performance achievable in practical detectors, and 2)
determine the thermal properties (heat capacity and thermal

conductance) of candidate materials for low temperature
detectors.

We will describe the fabrication procedure for the two

detectors and the testing program. From the derived detector

properties (resistance, heat capacity, and thermal conductance)

we can predict the thermodynamic noise of the device. We compare

the predicted noise to the measured noise. The discrepancies

arise mostly from the non-ideal noise of the thermistor. Scaling

laws for the excess resistor noise with volume and temperature
are discussed.

The results of these measurements allow us to set limits on

the performance of optimized detectors operating near 0.1K. We

present anticipated performance for two types of detectors; one a

"low tech" device, which can be constructed in any laboratory,

and a more sophisticated device using a planar Si process.

Detector Construction

Two types of detectors were built for these tests. The first

consisted of a thermistor of nuclear transmutation doped Ge

(Palaio et al., 1983) with gold coated ion-implanted contacts.

The thermistor is a parallelepiped about 0.8 mm between contacts,

and about 0.2 x 0.2 mm in cross section (Fig. la). The thermal
link to the cryogenic heat sink was provided by pieces of 7 _m
diameter. NbC N -coated carbon fiber (Pike et al., 1976).
Electrical andXm_chanical contact between the fiber and detector

was provided by Epotek H-20 E conductive epoxy. The NTD
germanium was chosen because of its excellent uniformity from

device to device, and its low heat capacity at 0.3K. The carbon

fibers combine negligible heat capacity with low thermal
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conductance. The conductive epoxy provides adequate electrical
contact to the detector, and the heat capacity has been measured

at T _ 0.3K (Weyhe et al., 1983).

The second detector uses an ion-implanted Si thermistor (.5

mm x .5 mm x .5 _m) in a Si chip approximately 0.5 x.0.5 mm x

.05mm (see Fig. ib). The thermistor is a boron compensated
phosphorus implant with ohmic contacts provided by arsenic

implants into the thermistor. Electrical contact to the chip was

made through aluminum contact pads covering the As ohmic

contacts. The device was_bonded with 0.001" aluminum wire (99%
AI, 1% Si, all else < 10--%) for electrical and thermal contact.

The heat capacity of-the device is dominated by the A1 in the

temperature range where substantial thermal activation of

quasiparticles occurs. Thus, the detector is a low heat

capacity, low thermal conductance device only below ~160 mK.

Test Apparatus

The two detectors were tested in two d_fferent cryostats.

The Ge detector was primarily tested in a -He4evaporation

cryostat. The cryostat is operated with the He3bath cooled to

_I.4K by pumping to reduce the heat load on the He stage. The
He cold surface could be operated down to 284 mK. The cryostat

was provided with nichrome thin film load resistors (90 _q; nine

10 M/% in series) made by MSI. JFETs for amplifying the signals

were suspended on a thermally isolated structure of stainless
steel wires. Since the FETs operate near 77K, the detectors were

completely shielded from the thermal radiation emitted by the

FETs by a box surrounding them. Electrical connection to the

JFET gate was made by a 0.001" manganin wire. The gate leads
were tensioned to _15 gm to raise the resonant frequency to

reduce the microphonic sensitivity. The entire cryostat was

operated inside an electrically shielded enclosure to reduce

extraneous pickup.

For testing at lower temperatures, we made use of a 3He/4He

dilution refrigerator. The SHE refrigerator offers about 50 _W

cooling power at i00 mK. The cryogenic electronics were modeled
after the -He cryostat design with minor changes. The most
notable is that the box containing the thermally isolated JFETs

is rigidly mounted to the still in the refrigerator using a low

thermal conductance fiberglass epoxy truss. Since the still can

tolerate only ~10 mW power input, and the four JFETs can

dissipate 30 mW, the JFET box was heat sunk to the 4.2K heat sink

with a copper rod. This provides a low h_at _oad to the still
while holding the JFETs rigidly near the -He/ He mixing chamber.

The refrigerator is operated in a manner which would allow

its open loop temperature to be less than 50 mK. The
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refrigerator is equipped with superconducting transition
thermometers with fixed points at 98 mK, 162 mK, and 208 mK. We
are able to servo the temperature at each of these fixed points
using feedback control of the cold surface heater power.

Measurements

In an ideal bolometer in which the thermistor's resistance

depends only on temperature and which has a single time constant,

the responsivity can be derived from the detector bias current,

I, resistance, R, dynamic impedance, Z, and effective time
constant, T (Mather, 1982). If the detector resistance has an
electric field dependence, one requires the dynamic impedance at

high frequency (Z(_)). In an "ideal" bolometer Z(_) should be
equal to R. In practice, however, Z(_) can be substantially less

than R (Mather, 1984). Measurements of all these parameters
allow us to predict detector responsivity without any other

knowledge of the details of the detector design.

Having determined the responsivity of the detector, we need

only a measurement of the noise to determine the detector NEP.

This measurement can be made with a spectrum analyzer at the

output of the low noise preamplifier.

From the I-V characteristics of the detector, the resistance

and thermal conductance can be determined. Having measured the

thermal conductance, the heat capacity is then derivable from a
measurement of the effective time constant. The measured I-V

characteristics for the Ge and Si detectors are shown in Figure

2, and the derived parameters for these detectors are given in
Table i.

The measurements necessary to characterize our detectors are

thus relatively straightforward to carry out. Special care was

taken in the measurement of Z(w) (Mather, 1984) to make proper

allowance for the stray capacitance in the detector-load resistor

network. This was accomplished by adopting an equivalent circuit

model for the network and fitting the stray capacitances, using
measurements made with the bolometer at zero bias, where it is a

resistive device. We assume the capacitance values so derived
are also correct when the detector is under bias. The shape of

the Z(w) curve indicates that this is a good assumption.

The R(T) measurements were made by measuring the device

resistance at a series of calibrated temperature settings. Very

low current is used to prevent self-heating or changes in
resistance due to the applied field. The voltage coefficient of
resistance R(V) has been measured on similar thermistors in two

ways; first, the detector is maintained accurately at the bath

temperature via good heat sinking, and the detector resistance is
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measured as a function of applied field. In the second approach,
a detector is suspended from the bath through a thermal
conductance. A given amount of power is dissipated in the
thermistor, and its resistance is noted. Then, the same power is
dissipated in a resistor attached to the thermistor, which should
result in the same detector temperature. The resistance of the

thermistor is measured with a very small current. The difference
between the thermistor resistance is due to the electric field

dependence of the semiconductor thermometer.

X-Ray Responsivity Verification

X-rays provide a convenient and accurate means for absolute r

esponse calibration of thermal infrare_5detectors. The detectors
were exposed to 5.9 KeV X-rays from a Fe source The expected

pulse height from the deposition of this amount of energy into
the bolometer can be calculated from the bolometer's load curve

and Z(w) data using an appropriate thermal and electrical model

for the detector (Mather 1982, 1984; MMM 1984).

In the case of the Ge bolometer, a small dot of silver filled

epoxy was painted on the detector. The X-ray is nearly
completely thermalized when absorbed in the normal metal.

Comparison of predicted to observed pulse heights show that the

ratio of observed pulse height to predicted pulse height is 1.04
+ .05. This is strong confirmation of the electrothermal model

{or the bolometer. If the electric field dependence of the

detector resistivity is ignored, the predicted pulse height is
too high by nearly 30%.

The silicon detector is more difficult to analyze since it

had no specific X-ray converter. We have observed that X-rays in

our Si detectors deposit between ~70 and 95% of their energy as

heat. The rest of the energy is stored as trapped holes and
electrons.

The conclusion one draws from these results is that when a

proper model is used for the detector, the predicted "electrical

responsivity" is in excellent agreement with that determined by
experiment. Thus, if one attaches an infrared absorber of known

absorptivity to these bolometers, we can be quite certain of
their performance characteristics.

Having verified the responsivity of the detector using the X-

ray calibration and having obtained a power spectrum of the

noise, we are ready to compare measured performance to theory.

Mather has developed a nonequilibrium theory predicting the

thermodynamic limits to the sensitivity of ideal thermal

detectors (Mather 1982). This theory, however, makes two
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assumptions which may not be completely met by real detectors.

The first is that the detector can be represented as a single

time constant thermal system. This criterion does turn out to be

nearly true for the devices discussed above. The second

assumption is that the resistance is a function of temperature
alone and this is not the case for these detectors. Mather

(1984) has extended the theory to allow the calculation of the

responsivity and effective time constant in this case. The only

additional measured parameter required for this determination is

the dynamic impedance at high frequencies Z(_).

The noise of such a detector, however, depends on the

detailed physical mechanism responsible for the electric field

dependence on resistance, and cannot be derived from general

thermodynamic arguments like the phonon noise and Johnson noise.

Also, the calculated phonon noise power must be multiplied by the

detector responsivity to predict the output voltage noise arising

from this source. It is important that the proper value for the

responsivity, allowing for the field dependence, be used in this

calculation. Recognizing the uncertainty in predicting the noise

due to electric field-assisted conduction, we will nonetheless

use this procedure to obtain an estimate of the NEP.

Comparison between measured noise and calculated noise is

shown in Fig. 3. Note the significant rise in noise below 20 Hz

in the NTD Ge detector. E. Kriese (private communication) has

produced detectors from the same material using soldered contacts
which exhibit noise which is flat to below 2 Hz. We attribute

the excess noise in our system to the superconductor/conductive

epoxy joint used for electrical contact, and believe it is not

inherent to the thermistor material. It is possible however that

any thermistor operated in a regime where its resistance is

significantly reduced by electric field dependance may show some

excess noise. Further tests are required to test this

possibility. The ion-implanted Si thermometers show significant
I/f noise which becomes more severe as the size of the thermistor

is reduced. The mechanism responsible for this noise is not well

understood, but we note that it occurs under bias conditions

where the field assisted condition is important.

Expected Infrared Performance

The detectors we have tested can be fitted with infrared
absorbers and provide optical NEP's _ ixl0 -_ W/4Hz. This is near

the sensitivity required for a broad band far infrared photometer

for SIRTF (P. Richards, this conference). Table 2 shows how the

addition of the absorber would affect the performance of the two

detectors tested. Note that the Si detector need only have an

absorbing film added.
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These detectors represent a first step towards the
sensitivity regimes available at 0.1K. Improved fabrication
techniques (monolithic structures) will allow us to make small,
low-heat capacity devices which will have a performance
substantially in excess of that available with current devices.
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Table 1

Summary of Physical Parameters

Ge Detector Si Detector

Dimensions 0.2x0.8x0.2 mm 0.5x0.5x0.08 mm

_Bath 0.284K 0.098K
bol 0.328K 0.113K

Heat Capacity l.lxl0 -12 J/K 3.8x10 -13 J/K

Conductance l.lxl0 -9 W/K 1.3x10 -10 W/K

Resistance 15.7 M/I 9.4 M_%
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Table 2

Predicted Infrared Characteristics of NTD Ge Detector

with a 1 mm Absorber

Measured heat capacity of detector as tested

Diamond substrate 1 mm diameter, 25 _m thick

O

Metallic absorbing film: 20 ACr
O

32 A Au

ixl0 -12 J/K

-14
3.3xi0 J/K

1.2x10 -13 J/K

-14
5.4xi0 JIK

Epoxy for connection (_ 0.0025 cm diam. sphere)

Total heat capacity of IR absorber

Total heat capacity of IR detector

-13
~ 5x10 J/K

7.1x10 -13 J/K

-12
1.7x10 J/K

Predicted Detector Parameters:

NEPEIec (20 hz)

Absorption efficiency (freq. independent)

NEP0ptical

e

-17
8.4xi0 W/4Hz

50%

-16
1.7x10 W/4Hz

I.S msec.
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Flgure I= (a) Schematic of test NTD Ge detector with superconductor-

coated carbon fibres attached to gold-covered boron

contacts. The fibres are attached using conductive

epoxy.

(b) Schematic of test Si detector with ion-lmplanted

thermistor. The contacts are aluminum on arsenic. The

device is suspended by the wedge-bonded A1 wires, which
serve as both electrical and thermal connections. The

depth of the ion implant is about 0.5 pm.
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A PROGRESS REPORT ON BOLOMETERS OPERATING AT 0.1K USING ADIABATIC

DEMAGNETIZATION REFRIGERATION

T. Roellig, L. Lesyna, M. Werner, and P. Kittel (Ames Research Center)

SUMMARY

Bolometers are still the detectors of choice for low background infrared

observations at wavelengths longer than 200 microns. In the low background

limit, bolometers become more sensitive as their operating temperature

decreases, due to fundamental thermodynamic laws. Cooled space telescopes

such as SIRTF will provide a background low enough that bolometers will need

to be operated at a temperature lower than that of pumped helium-3 (0.3K) if

the observations are not to be detector noise limited. Out of the different

techniques that may be utilized to reach temperatures significantly lower than

0.3 K, we have chosen to investigate the possibility of using the technique of

adiabatic demagnetization of a paramagnetic salt as a method of cooling

bolometers for space missions. This technique is gravity independent,

compact, has no moving parts, and can have low power dissapation with careful

design. With the appropriate choice for the salt, the technique is also

easily capable of reaching temperatures below 50 mK. It should be noted that

whatever technique is used to achieve a low bolometer operating temperature,

it must be very stable with little thermal noise. Since bolometers are

thermal devices, they will be very sensitive to sink temperature variations.

We have chosen to evaluate the adiabatic demagnetization technique by building

a bolometer detector system operating at a wavelength of I millimeter for use

at a ground based telescope. We have constructed a small refrigerator

(approximately 18 inches high, 30 pounds weight) with optical and mechanical

interfaces for mounting at the cassegrain focus of the 5m Hale telescope.

(See Figure I). With this system we can achieve temperatures below 50 mK. By

only partially demagnetizing, the temperatures achieved are higher, but

magnetic field is then available for balancing the heat flow into the salt,

allowing stable temperatures to be maintained for many hours. The magnetic

temperature stabilization system is controlled by a small personal computer

system through an RS 232 interface as shown in Figure 2. With our system, a

thermal stability of 18 _K is obtained at an equilibrium temperature of 0.14 K

over a time period in excess of 4 hours. This corresponds to a bolometer

responsivity variation of less than I%. Ultimately, the system is expected to

be able to maintain a temperature of 0.1K for over 12 hours before recycling

the refrigeration system is necessary. As presently configured, the system

takes less than one hour to recycle.

The system we have constructed has been fit checked at the telescope and is

expected to take its first data in November, 1985. The bolometers for this

program have been developed independently using a larger laboratory adiabatic

demagnetization refrigerator. After some initial disappointments with a

variety of materials, including silicon on sapphire, we have found a crystal

of Ge:Ga that has the correct resistivity for operation at 0.1K. Based on

our electrical tests of this material we expect to reach a background limited
optical NEP of 9 x I0 -Ib w_'_ with our filter bandpass (8.5 cm -I to 11 cm -I)

at the telescope.
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LOW-BACKGROUND InSb ARRAY DEVELOPMENT

R. D. Thom and B. T. Yang

Santa Barbara Research Center, Goleta, CA 93106

ABSTRACT

Photovoltaic indium antimonide (PV InSb) detector array technology has

matured over the past several years to enable a wide variety of applications

to use this high-performance detector material to advantage. The operating

conditions for most of the applications to date for back-side illuminated PV

InSb arrays have encompassed focal plane temperatures ranging from 40K to

approximately 95K, with the majority in the narrower range between 60 and

8OK. Background flux (QB) conditions have ranged from I0I0 ph/cm2-sec to

1016 ph/cm2-sec, most typically between 1012 and 1014 ph/cm2-sec. Appropri-

ately, the array parameters have been optimized for maximum performance over

these temperature and background ranges. The key parameters which were

"peaked" in this process were the resistance-area product (RoA) of the detec-

tors and their quantum efficiency. The Space infrared Telescope Facility

(SIRTF) Infrared Array Camera requirements, however, present very low tempera-

ture (7K) and background (<106 ph/cm2-sec) operating conditions, plus the need

for very high signal-to-noise ratios. Preliminary analysis indicates that

back-side illuminated PV InSb arrays can be optimized for operation under

these conditions, and some performance projections will be presented.

I. INTRODUCTION

Photovoltaic indium antimonide (PV InSb) detector array technology has

matured over the past several years to enable a wide variety of applications

to use this high-performance detector material to advantage. Linear arrays,

linear arrays with time-delay-and-integration (TDI), two-dimensional arrays in

32 x 32 to 62 x 58 formats and even larger arrays in the classified arena have

been fabricated in InSb. The majority of these arrays have been mated to sil-

icon readout or multiplexer (MUX) chips using the hybrid indium bump intercon-

nection technique, the most mature design approach for implementing solid-

state readout of intrinsic detector arrays (Ref I). The several advantages of

InSb include: quantum spectral response from _I Vm to its cutoff wavelength

of 5.4 Vm (77K); high quantum efficiency (_60% without antireflection (AR)
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coating and >85% with AR coating); availability of highly pure InSb material

with excellent crystalline perfection; and a mature detector fabrication proc-

ess at SBRC utilizing ion implantation to form the PV diodes and photochem-

ically-deposlted SiO 2 for device passivation.

The operating conditions for most of the applications to date for back-

side illuminated PV InSb arrays have encompassed focal plane temperatures

ranging from 40K to approximately 95K, with the majority in the narrower range

between 60 and 80K. Background flux (QB) conditions have ranged from

1010 ph/cm2-sec to 1016 ph/cm2-sec, most typically between 1012 and

1014 ph/cm2-sec. Appropriately, the array design parameters, material doping

levels, junction profiles, substrate thickness, etc., have been optimized for

maximum performance over these temperature and background ranges. The key

parameters which were "peaked" in this process were the resistance-area prod-

uct (RoA) of the detectors and their quantum efficiency.

The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera

requirements, however, present very low temperature (7K) and background

(<106 ph/cm2-sec) operating conditions, plus the need for very high slgnal-to-

noise ratios. Knowledge of the physics of back-slde illuminated PV InSb

detectors and preliminary analysis indicate that it should be possible to

improve their performance under these extremely low T and QB levels by reoptl-

mlzing certain device parameters.

The key issues are:

• Reduction of dark current

• Reduction of detector capacitance to reduce the direct readout

(DRO) noise

o Preservation of useful quantum efficiency in back-slde illumin-

ated InSb detector arrays at very low temperatures

These are discussed in turn in the following sections.

II. DARK CURRENT ANALYSIS

Reduction of dark current is the primary goal of this detector develop-

ment program. It is appropriate to discuss the dark current in two different

temperature regimes: (I) the 40K to 80K range, which we will call the "ther-

mal regime"; and (2) the range less than 40K.
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For temperatures between 40K and 80K, PV InSb leakage current is de-

scribed reasonably well by the simple current-voltage equation (Ref 2):

I = Is[exp(qV/SkT ) - I], (1)

where I is the current, V the applied voltage, Is the saturation current, T

the temperature, q and k the usual physical constants, and B a number between

i and 2, depending on the origins of the leakage current in the device. It

has been well-established (Ref 3) that PV InSb in this temperature regime is

dominated by generation-recombination (G-R) current, for which to first order

= 2. Equation (i) may be differentiated to relate the saturation current to

the dynamic resistance Ro of the detector at V = 0:

dl I 1 qls

d--VIV=0 - No - beT' (2)

or its normalized figure-of-merit the RoA product to the saturation current

density Js:

8kT
R A (3)
O =q----_-°

S

RoA is the most commonly measured and intercompared parameter for PV

detectors.

The RoA product when controlled by G-R current depends on: the density

of G-R centers contained within the volume of the diode's depletion region,

which is characterized by an effective lifetime to; the width of the depletion

region W; the built-in voltage VBI; and the intrinsic carrier concentration

n i. The latter two parameters may be found in any standard semiconductor

device text (Ref 4). The RoA product in terms of these parameters is

~ ToVBI
R A - - (4)
o qniW °"

Figure I expresses measured RoA product versus temperature data for a

number of SBRC PV InSb detector arrays in terms of their corresponding satura-

tion current densities and dark currents. Equation (3) was used to calculate

Js, shown on the left-hand scale, from the measured RoA'S. The dark current
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specific to a detector area of (75 pm)2 and a bias voltage V = -40 mVis shown

on the right-hand scale, from

Ipixe I = JsApixel[exp(qV/SkT) - I]. (5)

The data show that meeting the requirement of Ipixe I < 25 fA at T = 50K and

V = -40 mV is feasible; however, the statistical base at this relatively low

temperature is scarce. The data point shown by the solid diamond (.) at 56K

is University of Rochester (Ref 5) data for an SBRC 32 x 32 array.

The broken curve in Figure I shows the theoretical dependence of the (G-R

only) dark current calculated using Equation (4) with NA = I018/cm 3,

ND = 2 x i015/cm 3, and to = 2 x 10-8 sec. The measured currents are seen to

follow the expected exponential decrease until temperatures reach the vicinity

of 55K, where new leakage sources (as well as leakage associated with dewars

and measurement apparatus) become nonnegligible. Extrapolating the curve to

50K suggests that for the existing InSb array with a nominal 75 _m x 75 pm

size, an Ipixe I of 25 fA or less should be attainable.

At temperatures below approximately 40K, thermally-generated currents

diminish rapidly. In particular, at temperatures in the vicinity of 7K, all

thermal leakage sources will effectively be zero, since they depend on the

intrinsic carrier concentration ni, with metallurgical junction G-R current,

field-induced junction (if any) G-R current, generation out of surface states

being directly proportional to ni, and diffusion current proportional to

ni2. One can quickly evaluate.n i at 7K from the applicable equation

14)T3/2 exp(-E /2kT), (6)ni = (1.044 x I0 g

where T is the temperature and Eg is the bandgap (0.234 eV at 7K) with the

result

n.(7K) = 1.19 x i0-69/cm 3, (7)
1

which is 78 orders of magnitude smaller than its 77K value. Hence it can be

safely assumed that thermal sources will be negligible.
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Therefore other sources - usually safely neglected in the 40-to-80K range

- will dominate. These include:

• Band-to-band tunneling

• Trap-assisted tunneling

• Tunneling in the surface region

• Surface leakage, i.e., shunt paths as distinct from field-

induced junction currents

• Leakage through the gate oxide

The physics of some of these mechanisms, or, more correctly, the input param-

eters necessary to calculate quantitative estimates of leakage due to them,

are not generally known, so an experimental approach must be taken. Dark cur-

rent measurements at 7K and low QB are therefore important in this development

program.

The magnitudes of the first three mechanisms listed above are a very

strong function of the electric field in the junction region, and the electric

field in the region where the junction intersects the InSb surface, which is

in general different than the field in the bulk junction. The magnitudes of

these fields may be reduced by increasing the depletion region width and, as

previously discussed, this is accomplished primarily through reduction of base

doping.

Prediction of tunneling current magnitudes is difficult at best, due to

various simplifications in modeling and lack of knowledge of the actual elec-

tric fields in a real PV detector. What will be illustrated here is an

attempt to reduce band-to-band tunneling current through parameter optimiza-

tion. The resultant magnitudes of dark current are not in themselves reliable

due to the factors mentioned above; however, the change in tunneling current

with doping is believed to be significant. Band-to-band tunneling, since it

depends on electric field rather than temperature (except through the depen-

dence of bandgap on temperature), is still active at liquid helium tempera-

tures. The interband tunnelin_ current density Jt' in amperes/m 2, is given by
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Jt = 3 1/2ME v I-- I/2 E 3/21

q m _m
r r g

4_i_2Egi /2 exp 21_qME '

(8)

where V

mr

Eg

E

VBI

W

M

q

= applied voltage, in volts,

= reduced mass = mcmv/(m + mv)

= 0.0136 mo = 1.2349 x 10-32 kg for InSb,

= bandgap, in joules,

= maximum electric field of a plane abrupt junction

= 2(VBI - V)/W, in volts/meter,

= built-in voltage, in volts,

= depletion width, in meters,

= field factor (see discussion below),

= 1.0544 × 10-34 joule-sec, and

= 1.602 × 10-19 coul.

The current at relatively large reverse biases was measured for ion-

implanted planar InSb diodes (Ref 6) and was found to be fit well by Equa-

tion (8), where M was treated as a fitting parameter. M is the ratio of the

average field in a real device to the field in an ideal plane (not planar)

junction, and is _i. There are at least three reasons why M may exceed unity:

I. Surface effects around the perimeter of the diode. For example,

an accumulated surface in the lightly doped n-type region would

increase the field in the junction-surface intersection region,

hence the local tunneling current.

2. Junction curvature, which occurs naturally in planar diodes,

increases the field at the diode edges relative to that of a

plane junction.

3. Material inhomogeneity, which can give rise to local high field

regions in the junction region (microplasmas).

M was found to be 1.3 ± 0.2 for a wide variety of diodes.

For SIRTF purposes, these earlier data do not extend to the required very

low current regime (limited by the instrumentation used in the measure-

ments). However, we can utilize Equation (8) and a representative empiri-

cally-determined M-factor to determine the interband tunneling component for

the lower detector voltages applicable to SIRTF. The results of such a

calculation are shown in Table i.
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Table I. Estimated Interband Tunneling Current for PV InSb at 7K
for Various Values of Diode Applied Voltage, V

Improved ArrayExisting ArrayIvl
(V) Jt (A/cm2) Jt (fA) Jt (A/cm2) Jt (fA)

2.1 × 10-15

I.i × 10-12

2.7 x 10-8

6.2 x 10-5

1.2 × 10-4

0.06

1.5 x 103

3.5 x 106

0.i

0.2

0.5

1.0

Eg = 0.234 eV

= lol8/cm 3
NAI/2

mr = 1.111267 x 10-16 kg I/2

3.2 x 10-57

1.9 x 10-49

1.I x 10-36

6.3 x 10-27

1.8 x 10-46

i. 1 x 10-38

6.2 x 10-26

3.5 x 10-16

M = 1.462

T = 7K

Apixe I = 5.63 x 10-5 cm 2

The extremely strong dependence on voltage and the other parameters is

evident from the table. While it cannot be concluded whether or not interband

tunneling current will be a significant dark current source at 7K with the

existing material (left-hand columns of Table i), the predicted dark currents

are close enough to the 0.01 fA requirement to cause concern. This is partic-

ularly so when one considers the possibility that the field in the surface

region of the diode may be several times larger than that in the bulk junction

(i.e., M >> I), dependent on junction passivation conditions at T = 7K, which

would increase the currents by orders of magnitude. Table I does demonstrate,

however, the improved array (right-hand columns) is designed to reduce the

tunneling current to negligible levels for the same diode conditions and

assumptions.

III. DETECTOR CAPACITANCE

A key parameter affecting the performance of InSb in Band i, in addition

to the leakage current, is the detector capacitance. It is desirable to

reduce the detector capacitance to reduce the direct readout (DRO) noise.

As pointed out in the previous section, the existing InSb product is

designed to optimize the RoA product; whatever capacitance results is

accepted. The photodiode junction capacitance is inversely related to the

depletion width, at zero volts given simply by:
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Cj/Aj = Es/Wo, (9)

so that detectors optimized for RoAhave a relatively large capacitance per
unit area. It is estimated that with appropriate process control and proper

selection of material properties, the junction capacitance can be reduced from
3.26 × 10-8 F/cm2 to about 1.05 x 10-8 F/cm2. In other words, for a

50 _m× 50 _mdetector the junction capacitance will be about 0.26 pF. Assum-

ing the gate overlap capacitance of 0.19 pF, the total detector capacitance

will be about 0.45 pF, comparedto 1.53 pF for the existing array.

In a future SIRTF-optimized maskredesign, anticipating that tunneling

mechanismswlll be potential sources of dark current, it will be important to

minimize high-field regions, such as can occur at inside or outside corners of

junctions, etc. Although small radii are normally incorporated at the corners

of the detector junctions (and/or occur naturally in the photolithography and

etching processes), it is believed that larger radii maybe very beneficial

for this application, or in the extreme, use of circular detectors. It has

been experimentally verified that the breakdownvoltage of InSb diodes - the

voltage at which substantial tunneling current is observed in the I-V curve -

is muchhigher for circular geometries comparedto square.

IV. QUANTUMEFFICIENCYAT VERYLOWTEMPERATURES

A final issue that will be addressed in the Band 1 Detector Development
Program is that of the quantumefficiency (as a function of wavelength) for

back-side illuminated InSb detector arrays at very low temperatures (i.e.,

7K). Limited (and conflicting) data on somematerial parameters measuredat

low temperatures suggest that the minority carrier diffusion length - which

controls the spectral responsivity of the array - maybe shorter than it is in

the 40-to-80K temperature range. Thls is not believed critical, since an

alternate array configuration is possible that would eliminate any concern

over loss of quantumefficiency at low T, if it were found to exist. However,
it is essential to make radiometric measurementsat T _ 7K to obtain the

necessary data base.

The responsivity (Ref 7) of the back-side illuminated InSb diode struc-

ture is primarily determined by the diffusion length Lp of the minority
carriers in the n-type substrate:
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Lp = (DpTp)I/2

(10)

where D is the diffusion coefficient, T the minority carrier lifetime, and
P P

_p the mobility of the holes in the n-type substrate. The thickness d of the

InSb substrate is reduced by lapping and etching in the standard baseline pro-

cess to somewhat less than the diffusion length, d < Lp, for high internal

quantum efficiency.

The issue for SIRTF is that the temperature will be a factor of I0 lower

than at 77K; hence, a loss of _ or 3 due to T alone in Equation (I0). The

mobility and lifetime are also functions of temperature, in general. The

lifetime is approximately 500 ns (measured on starting material) and, as it is

Schockley-Reed limited in the 77-to-7K range, it does not change appreciably

as a function of temperature. Some limited data on hole mobility (Refs 8,9)

show _p decreasing below 20K. The resulting diffusion lengths Lp are tabul-

ated in Table 2.

Table 2. Estimated Minority Carrier Diffison Length for InSb

T

(K)

77

5O

7

4

2 _
(cm l_-sec )

8,000 - i0,000 (Ref 8)

15,000 - 20,000 (Ref 8)

3,000 - 4,000 (Ref 8)

I0,000 (Ref 9)

Lp
(_m)

~55

_60

_I0

_13

T = 500 ns
P

For 77K-to-50K operation, thinning of the InSb to its standard thickness

of d = i0 to 12 _m satisfies the condition for high internal quantum effi-

ciency. For T <_ 10K, however, if the limited data are correct, it may be

necessary to thin the base further or suffer some loss of short wavelength

i0-i0



response. It should be noted that there are further uncertainties in the

above predictions in that the quoted mobilltles are Hall mohilltles (i.e.,

calculated from Hall coefficients and sample conductlvitles) and do not

necessarily apply to the diffusion problem.

Note that with this mechanism, the responsivity loss will be greater at

shorter wavelengths, which are absorbed within a shallower depth at the back

surface and therefore require the photogenerated holes to diffuse a greater

distance to the junction. Also it should be understood that this mechanism is

a result of basic material properties and the back-side illuminated configura-

tion, and will be independent of individual vendor fabrication processes.

(Improper back surface etching/passivation procedures will, however, exacer-

bate the situation.) Note, as well, that a loss in diffusion length at low

temperatures in front-slde illuminated devices will have the opposite effect;

i.e., the responslvlty will be degraded at long wavelengths, since those pho-

tons are absorbed deeper in the base, and therefore must diffuse back to the

junction.

Vo SUMMARY

I.

.

.

.

.

A dark current of 25 fA at 50K should be attainable for the

existing array.

Band-to-band tunneling current is the dominant leakage current

at 7K, since the thermal current dwindles to zero.

Optimized array performance is sensitive to high electrical

field and junction passivation.

An optimized array will reduce junction capacitance, subse-

quently reducing readout noise.

Quantum efficiency depends on the minority carrier diffusion

length.
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N87 -13715

InSb Arrays: Astronomy with a 32x32 CCD/

Development of a 58x62 DRO

W. J. Forrest and J. L. Pipher

Department of Physics and Astronomy

University of Rochester

Rochester, N.Y. 14627

Text of report presented at the Infrared Detector Technology

Workshop held at NASA Ames Research Center August 13-14, 1985.

I. Introduction

This report summarizes experience gained at the University of

Rochester in operating infrared detector arrays for high

sensitivity astronomical applications. It is intended as an update

to earlier reports ( Forrest and Pipher 1983, Forrest et al 1985)

as well as a window into our future plans in this area.

The first section describes progress made in operating the

32x32 InSb array with bump-bonded Silicon CCD readout. Full

details of this system are revealed in Forrest and Pipher 1983 and
Forrest et al 1985. The middle section describes some astronomical

work done with the 32x32 camera. The last section describes our

plans for the future, including improvements for the 32x32 Camera

system as well as implementing a new generation of 58x62 InSb

arrays using switched-MOSFET direct read out multiplexing system in

place of the older CCD technology.

II. 32x32 InSb/CCD Hybrid Update

A. Sensitivity of Camera System

Of particular interest to Astronomers is the sensitivity

actually achieved with detector arrays in a working camera system

used for Astronomical observations. The intrinsically low

backgrounds experienced in ground-based observing at wavelengths

less than 3 microns make this an appropriate test-bed for achieving

the SIRTF-class performance discussed elsewhere at this conference.

The CCD technology limits the performance of our 32x32 InSb array,

but it is reassuring nontheless to be able to report quite good

performance levels for this device.

i. Low Backgrounds

In the course of our observational program, a series of 6

exposures of the central 14" region of our Galaxy was acquired at

the IRTF 3m telescope in August of 1984. The exposures were made

in the J band (1.23 micron wavelength) using a 190 sec on-chip

integration time. The data was processed as described in Forrest

et al (1985) to a final calibrated image. This image is shown in

fig. 6. The noise level was determined by investigating the RMS
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fluctuations in a 6x6 window moved around the 63x63 final image.

In regions away from bright source structure, the RMS noise level

corresponded to a J magnitude of +21.5 magnitude. This required

0.8 hours of total observing time of which 0.3 hours were spent

integrating on source and the rest on beam-switching and background

measurement. Some of this RMS noise could represent residual

source structure, so this procedure really under-estimates our

sensitivity. Extrapolating to a standard 1 hour of observing, we

achieved a 1 sigma noise level of +21.6 magnitudes/pixel in the J

band. Using our calibrated counts for zero magnitude for this run

gives a 1 sigma noise level of +20.9 magnitudes/pixel in the K (2.2

micron) band.

This sensitivity exceeds that estimated in Forrest et al

(1985) by 30%. It should be mentioned that these sensitivity

estimates do not correct for the fact that our detectors occupy only

80% of the pixel area, so the detectors are actually more sensitive

than estimated here. Nontheless, this sensitivity level is better by

about 1 magnitude (factor of 2.5) than the best published claims of

sensitivity of single-detector InSb systems developed for

astronomy. It also exceeds by 2.2 magnitudes (a factor of 8) the

published sensitivity achieved by the University of Arizona group

(Philips-Walker, Rieke and Montgomery 1985) in the J band using a

single Ge photodiode and a Low (1984) type optimized JFET

integrating preamplifier. This demonstrates the good performance

that can be achieved using off-the-shelf fully multiplexed infrared

arrays.

2. High Backgrounds

At the high backgrounds experienced in ground-based observing

longward of 3 microns, each of the working (about 920) detectors in

our array is "background limited" in the sense that the noise in

electrons is proportional to the square root of the background flux

incident on each detector. As described in Forrest et al (1985) we

achieve a noise level about 1.5 times the shot-noise limit in the

lab when running near full buckets. At the telescope a similar

noise level is observed when observing under good conditions. It

is interesting that we can achieve this level of performance

without "chopping" in the traditional sense. Rather, we "nod" the

entire telescope and alternate between source measurements and

Dackground measurements on blank sky typically 100" away.

Typically we spend 20 sec on the background followed by 40 sec on

source, followed by 20 sec on bacground etc. This corresponds to a

nodding frequency of 1/60 Hz rather than the more usual 5-10 Hz

chopping frequencies typically employed in the thermal infrared.

We find that background limited performance requires a well-

designed low background telescope, such as the KPNO 1.3m and IRTF

3m, and a sky completely free of clouds. In addition, when

subtracting the background flux from the source frames in our data

reduction process, we can employ an arbitrary linear combination of

unit weight of the background frames before and after a given

source frame. It is often necessary to adjust this linear

combination in order to achieve a uniform background subtraction
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and low noise.

B. Re-imaging optics.

The optics we employ are shown in Fig. i. The relay lens
images the telescope secondary on the cold Lyot stop, which is
placed at the filters, while re-imaging the celestial objects onto
the infrared array. There are several advantages to this system.
The single lens is outside the dewar, allowing easy focus and
alignment adjustments. The initial image of celestial objects

occurs in free space, preventing dust, scratches, etc. from

degrading the image. By substituting a different focal length

lens, the dewar can be matched to telescopes of differing f/#'s,

without any internal adjustments; we have succesfully employed

lenses for f/14, f/30 and f/35 telescopes. The quality of imaging

with the f/35 lens is demonstrated in fig. 2. Finally a zoom lens

feature can be had by moving only one element; unfortunately the

element is the detector array itself. By moving the array closer

to the Lyot stop, and refocussing the telescope, we would zoom out

and look at a larger region of sky. The zoom feature hasn't been

tried yet. The disadvantages of our current setup are: the lens is

chromatic and transmits only 70%, reflecting the rest. The former

results in a plate scale varying with wavelength, which makes

comparisons of images at differing wavelengths more complex. This

could be solved by employing an achromatic doublet. The latter

reduces our signal and increases the background longward of 3

microns. We plan to investigate the possibilities of anti-

reflection coating the KRS 5 lenses. This should result in much

better sensitivities in the thermal infrared through reduced

backgrounds.

C. Dark Current

Because of the extremely low backgrounds possible with a

cooled space telescope, such as SIRTF, we desire similar low dark

current levels in any detector materiel to be used in such an

experiment. Typical levels of i-i0 e /sec are desired. A concern
with InSb detectors are the dark currents attainable. We have

therefore extended our dark current vs. temperature measurements

below the 60K point reported by Forrest et al (1985). Temperatures

down to 53K are now possible with our current dewar using pumped

_ Temperatures down to 45K have been attained using LHe. BelowK, the operation of the CCD readout becomes unreliable and it

stops working at 41K. The results are shown in fig. 3. It is

gratifying to see that the dark current, with 30 mV of back-bias,

continues to decrease about a factor of 2 every 2K down to the

lowest_temperatures we can operate at. A dark current of .16 fA or
1000 e /sec has been achieved in the 45-50K region. We therefore

have begun construction of an observing dewar which will be able to

operate in the optimum 46-47K range using pumped N_. The new dewar

will also employ 1-2% circular variable filter whe_is covering the

1.3-4.5 micron region, as well as our standard photometric filters.

This will widen the scope of our scientific investigations as well

as allowing us to reach very low background levels, around 30
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photons/sec/detector, from ground-based telescopes. Since the new
InSb detector arrays, in 58x62 format, currently being constructed
by SBRC are similar to our current 32x32 array, we anticipate much
lower dark currents will be achievable by operating the arrays at
the lower temperatures attainable with the switched-MOSFET DRO.

III. Astronomy

We present some results of our current astronomical research,
showing the power of fully multiplexed infrared detector arrays.

A. The Galactic Center

Of considerable interest in understanding the dynamics and
energetics of the galactic center region is: does any infrared
source lie at the position of the Sgr A* non-thermal point radio
source? In collaboration with W.A. Stein, we have attempted to
answer this question using our 32x32 array camera mounted on the
IRTF 3m in an August 1984 observing run. This configuration gives
approximately 0.45" pixels for fine positional resolution, while
still allowing us to simultaneously observe several objects to
derive accurate offsets. Images of the central 14" (0.7 pc) of the
galactic center at J, H, K, L', and M' (1.23 through 4.7 microns)
have been obtained. To obtain accurate astrometric positions, we
calibrated our plate scale at each wavelength by observing 4 star
pairs with well known separation and position angle. We
supplemented this with star streaks, exposures of a bright star
with the telescope drive off, to determine the E-W direction
accurately. Then we measured the offset between the prominent
infrared source IRS 7 and the visible star A, which has a well
known absolute position. This could be done without moving the
telescope by placing Star A in the NE corner of the array and IRS 7
in the SW corner. Having thus determined the position of IRS 7,
the position of Sgr A* on our various images followed immediately.

The K image is shown in fig. 4, a cross marks the position of
Sgr A*. It can be seen that no discrete 2 micron source coincides
with it. A plot of the equal surface brightness contours from this
image are shown in fig. 5, with some of the infrared sources
marked. Images at the other wavelengths are shown in fig. 6; again
no source appears at the Sgr A* position.

The only discrete object which could possibly coincide with
Sgr A* lies to the North about 0.7" in our images. Because of its
proximity, we have studied this object, which we call IRS 16 NW, in
more detail. We find that it lies at the same position as CCD 2,
an object seen in various 1 micron images of this region. We have
derived the infrared brightness of this object by comparing it to
the brightness of IRS 7. This was necessary because of the
extremely crowded field, with diffuse emmission and discrete
sources everywhere. The brightness ratios to IRS 7 were derived by
shifting and subtracting the IRS 7 image until the IRS 16 NW source
disappeared. In fig. 7 are given the results.

11-4



It can be seen that when de-reddened, the colors of
IRS 16 NWare nearly neutral, which implies a hot object. If we
take the de-reddened K brightness of 7.3 mag and a temperature of
30,000K, which is suggested by the excitation level of t_e central
regions, the luminosity of this object would be about i0 v solar
luminosities. This is comparable to the observed luminosity (about
2x10 solar) of the central 39" region, but falls short of the

higher total luminosity {2x10 solar) inferred by current models.

Thus it appears that IRS 16 NW is not the whole story here.

Further, it seems that the "central engine", if it exists, should

be i0 times brighter than IRS 16 NW; no such object is immediately

evident in our images. This work is being prepared for publication

(Forrest, Pipher and Stein, 1985).

B. Improved images of IRTF 3m

In a July 1985 observing run on the IRTF 3m, the telescope

images were much improved over those seen in August 1984. Fig. 8

shows a comparison between stellar images. Figure 9 shows the

improved quality of Galactic Center images which resulted from

this. We note that the best images were obtained with the

telescope tracking in the manual, rather than computer, mode.

Also, some image degradation was experienced with the telescope

tilted far from the Zenith. Interestingly, we experienced some of

the best "seeing" conditions, when a major fraction of the light

could fall on one 0.45" pixel, at the same time as other telescopes

on this mountain were reporting poor visual seeing.

C. Active Protostars

We have found fascinating structure in star-formation regions

in our galaxy. As examples, we show 2.2 micron images of regions

around AFGL _591.(=U of A 27) and S 140 IRS 1 in figs. 10 and ii.
These are 10 -10 D solar luminosity protostars. Each shows high-

velocity, bipolar outflow in CO and high linear polarization at 2.2

microns. In our images, well-defined circular (S 140) and oval

(UofA 27) loops are seen, with the bright primary source at one

edge of the loop. Significantly, the orientation of the loops is

along the direction of bipolar flow. We suggest that the loops may

be due to shocked H_ emission where the high velocity flow is

colliding with dens_ molecular cloud material. The three

dimensional structure may actually be that of a bubble blown into

the molecular cloud by the protostellar wind.

IV. Future Plans

A. New InSb and Si:In Arrays.

Our plans for improving the 32x32 InSb array system have been

mentioned above. We now have on order a new 58x62 InSb array from

SBRC, which is expected to give much improved performance. A

comparison of the two arrays is given in fig. 12. In addition, as

part of SIRTF detector development program, a second 58x62 InSb

array is on order from SBRC, with lower doping level to reduce the
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dark current and read noise. The InSb arrays will be compared to
Si:In photoconductive arrays to determine the best detector arrays
for the 2-5 micron region for the Infrared Array Camera and the
4-8 micron region for the Infrared Spectrometer on SIRTF.

Besides the larger format, the new 58x62 arrays employ a
switched-MOSFET direct read out multiplexer which should give
better performance and more flexibility than the CCD readout on our
32x32 array. The array will be x-y addressible on a pixel by pixel
basis and capable of non-destructive readout. It should operate
well in the 4-60K temperature range, allowing us to reach much
lower dark currents. Finally, the rms read noise is expected to be
less than 400 e , with a goal of less than 100 e in the second-
generation, lower doped device. Because of the similarity of
material and array construction, we expect the good imaging
properties of our current 32x32 array to be maintained in the new
InSb arrays.

The Si:In arrays are expected to deliver very low dark
current and read noise, but sensitive, calibratible performance and

good image quality under SIRTF conditions must be demonstrated.

B. Testing in the Lab and at the Telescope for SIRTF-class
Performance

As summarized in fig. 13, the backgrounds expected on SIRTF

are extremely low, leading to extremely good sensitivity if good

enough detectors can be developed. Also summarized in fig. 13 are

calculations which show that these low background conditions can be

simulated in the lab and at the telescope using our current dewar

design, with a window to the outside where objects to be imaged are

placed. Thus, in the lab, in the J and H bands, extremely low

background levels can be achieved in a darkened b_t still 300K
room. To get these low levels, filters wfth <i0- of thermal leak

must be developed. We plan to measure__he leak and add blocker
glass, such as OW-I which transmits i0 per mm, to achieve this
level.

At the telescope, fairly low backgrounds are encountered in

the J band, while the H band suffers from large OH airglow and the

K band from thermal emmision. However, by careful choice of

wavelength using o,lr 2% spectral resolution filter wheel, we can

achieve very low backgrounds, around 30 photons/sec/detector, at

2.05 and 1.35 microns. Thus we will be able to operate the arrays

and test various clocking algorithims and observing techniques

under conditions very similar to those expected on SIRTF. We feel

this experience will be very important to ensure that the maximum

performance from the SIRTF experiments is achieved. Because of the

extremely large thermal backgrounds, this kind of testing is not

possible at longer infrared wavelengths, as summarized in figure
13.
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2. 32x32 InSb array image quality attained with re-imaging optics 
in tne 2.5:l mode for operation at f/35 telescopes. Data obtained 
during a July 1985 observing run at the IRTF 3m. The image of a 
laboratory point source is displayed in the upper 2 panels, the 
logarithmic display accentuates the low level signals. Two images 
of the star 20 Oph are shown in the lower two panels, illustrating 
the influence of telescope optics and atmospheric distortion on the 
image quality. These are the sharpest stellar images we have 
obtained to date. The pixel size was 0.43" square and the 
wavelength 2.2 microns (K). 
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3. Dark current vs. temperature for typical InSb detectors on the

32x32 CCD array. --A-back-bias of 30 mV was applied to insure good

charge injection efficiency. Horizontal error bars represent the

range in temperature during a dark current measurement.
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4. The 2.2 micron (K band) image of the galactic center. The 
region portrayed extends 15.1" N-S and 13.8" E-W. The scaling is 
logarithmic to display the wide dynamic range of this image. A "+'I 

marks the calculated position of the Sgr A *  source. 
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5. A plot of the equal surface brightness contours from the 2.2 
micron image of figure 4 .  Contours are shown every factor of 1.20 
(0.2 magnitudes) in surface brightness with every other contour 
dotted. The display has been rectified to portray the true 
appearance on the sky with tic marks 1" apart shown in the upper 
left corner. An " X "  marks IRS 7 and + I s  mark various 2 micron 
sources. The filled box represents the calculated position of the 
Sgr A *  compact radio source; the +0.5" error bars are our estimate 
of the positional uncertainty. 

- 
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6. 1.23 (J), 2.23 (K), 3.75 (L') and 4.67 ( M I )  micron images of 
the central regions of the galactic center. The displayed levels 
are scaled logarithmically from 2% to the peak IRS 7 brightness; 
the magnitude of IRS 7 is given for reference in each image. A "+ "  
marks the calculated position of Sgr A * .  The presence of IRS 3 in 
the J image may be due to a thermal leak in our J filter. 
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Table 2

Brightness of the IRS 16 NW Point-Like Object

Brightness ratio [lJ De-reddened t

l(_m) IRS 7/IRS 16 NW IRS 16 NW [I] IRS 16 NW

1.23 4 + I + 14.7 mag 7.0

1.65 16 + 4 + 12.1 7.4

2.23 28 + 5 + I0.0 7.3

3.75 65 _+ 15 + 8.8 7.5

4.67 > 25 > 7.9 > 7.1

+_0.3

t assuming the extinction law of Becklin et al. (1978)

7. The derived brightness of the IRS 16 NW point-like object from
Forrest, Pipher and Stein (1985).
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8. Comparison of stellar images from August 1984 and July 1985 
IRTF 3 m  telescope runs. The display scaling is the same as in 
figure 2. The dramatic improvement in the July 1985 images is due 
primarily to improved alignment of the IRTF mirrors. Bob Howell 
of the IRTF staff did much of the alignment work. 
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11. The 2.2 micron ( K )  image of the region around I R S  1 in the 
Sharpless 140 complex from a July 1985 IRTF 3m run. The young, 
luminous star is the bright object at the southern edge of the 
image. 
and the 2 micron polarization E-vector is perpendicular to this 
flow. 

The a x i s  of high velocity, bipolar outflow is North-South 
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Comparison of SBRC InSb Arrays

Old New

Pixels

Readout

32x32

CCD, sequential

Operating Temp.

Pixel Spacing

Area Fllled

Dark Current

Detector Resistance

Read Noise

Bucket Size

Quantum Efficiency

Sensitive Wavelengths

Imaging Quallty

Working Detectors

Plxel-plxel

Non-unlformlty

41-60 K

101 um

807,

l O00 e-/sec @ 45K & 30 mv

2xlO 14 9

<1400 e- rms

107 e-

0.6-0.65

1.2-5 um

excei Ient

85-90_

<10%, resistance

and responsivlty

58x62

X-Y adressible,

non-destructive, switched FET.

4-60 K

76 um

90%

TBD

TBD

<400 e-, TBD

106 e-

0.6-0.8, TBD

TBD

TBD

TBD

TBD

12. Comparison of the present 32x32 InSb array with CCD readout to

the new 58x62 InSb array with switched MOSFET direct readout. Both

arrays manufactured by Santa Barbara Research Center.
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TABLE 1: TYPICAL BACKGROUNDS IN SPACE

SIRTF Effective Area 4.9 x 103 cm 2, Pixel diameter = 2.4k/D

Wavelength Al Background current Theta

(um) (um) (photons/sec) (FA) (arc sec)

2. ] 0.6 6.8 1. IxlO -3 1.2

3.54 I. i 12.8 2.0xiO -3 2.0

4.6 l.4 85.2 I.4xlO -2 2.6

12.6 3.8 1.4xlO 4 9.9 7.0

26.9 8. I l. IxlO 6 180 15

TABLE 2: ACHIEVABLE BACKGROUNDS IN LABORATORY AND AT TELESCOPE

Laboratory, f/14, 75um pixels, 30OK, Emissivity = i

Wavelength

(_m)

I .25

1.65

2.23

3.3

12.6

AI Background current Source

(um) (photons/sec) (fA)

0.23 0.03 4.8xi0 -6 \

0.32 130 0.02 \ a!1,
0.41 lO 5 15 > thermal

0.2 i07 1.6x103 / emission
0. I 109 1.8xlO 5 /

Telescc_oe, f/14, 75 um pixels

I .25

I .65

2.23

2.05

] .35

0.23

0.32

0.41

0.036

0.024

300 + 0.05 + OH emission

3000 + 0.5 + OH emission

3000" 0.5" Primarily thermal

emission

42 + 7.0xlO -3+ therma! emission

3+ 4.8xi0 -4+ Zodiacal scat.

<30 + <4.8xi0 -3+ OH emission

+estimated

m

measured

13. Photon background levels anticipated for SIRTF compared to

background_ achieveable in the laboratory and at a ground based

telescope. The SIRTF backgrounds are due to the Zodiacal light.

At the telescope and in the lab, similar very low backgrounds can

be achieved in the 1 to 2 micron region by careful selection of

wavelength and spectral bandpass.
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DEVELOPMENT OF INSB AND

N87-13716

SI:GA ARRAYS FOR ISO CAMERA

F. SIBILLE

Observatoire de Lyon

69230 St. Genis Laval

France

I Introduction

The Infrared Space Observatory (ISO) satellite will contain a 60 cm

telescope. The temperature of the mirrors is below 12 K, and the

temperature of the 4 instruments at the focal plane is below 8 K.

A 4 faces pyramid mirror feeds each experiment with a 3 arc minute

part of the telescope field of view. In principle, only one instrument

operates at a time, but parallel operation of 2 instruments on 2

different points is also considered. Each instrument takes a 90°

quadrant of the Focal Plane Assembly container : a 60 cm diameter

cylinder, 30 cm high, located just below the support of the primary

mirror.

The 4 experiments, which will be built with national Space Agency

funding, have been selected in June 1985 by ESA :

- Long wavelength spectrometer

- Short wavelength spectrometer

- Photometer

- Camera

ISO-LWS P.I. : P. Clegg

IS0-SWS " : T. de Graauw

ISOPHOT " : D. Lemke

ISOCAM " : C. Cesarsky

II ISOCAM

Figure (I) shows the principle of the camera, in its current most

complicated version. Cost and technical constraints could introduce

some simplifications. The architecture is organized in 2 wavelength

channels using 32 x 32 arrays :

- Short wavelength channel (SW) : 3 to 5 microns with an InSb CID

- Long wavelength channel (LW) : 5 to 17 microns with an Si:Ga DRO
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The 2 channels have an identical optical layout, with an off-axis

field mirror in the focal plane of the telescope, imaging the pupil
on a filter, and a lens imaging the focal plane on the array.

Only one channel operates at a time, 2 field mirrors are mounted on

a wheel, feeding alternatively the LWor the SWchannel.

There are 2 wheels in each channel, the first one holds 15 discrete

band-pass filters and a CVF, the second one holds a set of 3 lenses

providing field of view per pixel between 3 and 12 arc second.

At the entrance of the camera, a wheel introduce in the beama set of

polarizers, or a mirror feeding in the beamthe light from an internal

calibration source for flat fielding of the arrays.

III Array for the 3 to 5 microns channel

The SWchannel will use a 32 x 32 InSb CID, its characteristics are

summarizedin Table (I). This array is already developed in France

by Soci@t@ Anonyme des Telecommunications (SAT), samples have been

delivered to the D_partement de Recherche Spatiale of the Observatoire

de Paris at Meudon, who is responsible for its integration in ISOCAN.

The ongoing development work at Meudon aims at improving :

- the readout noise, with a reasonable design goal of 500 electrons

with one preamplifier per raw.

- the dark current, using optimized bias voltage parameters.

- the heat dissipation, which must be below 10 mW.

IV Array for the 5 to 17 microns channel

For wavelength beyond 5 microns, and for the level of performance

requested on ISO, there was no array readily available in Europe.

The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique

et de technologie de l'Informatique (LETI) in Grenoble was ready and

equipped for undertaking the development of an array for this purpose,

and has signed with CNES a contract for a feasibility study.
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The baseline of the study is a 32 x 32 array of Si:Ga photoconductors,

hybridized by metal bumptechnique with a MOSFETDROarray.

The Si:Ga material already produced is satisfactory, providing a peak
responsivity of 3 A.W-I between4 and 10 K.

With the design goal of a 200 electrons readout noise, the first try

on the DR0circuit was a success above 30 K, but failed below this

temperature. An improved circuit is in a production phase, with

results expected for the end of 1985.

For this array, because of the rather large volume of the detectors,
radiation environment on the nominal 12 hour orbit of ISOwill

probably limit the integration time to about I second.

12-3



TABLE I_ : CHARACTERISTICS OF ARRAYS

Iso 

CAMERA

ISOCAM

2 CHANNELS "

2 TO 5 Dm CHANNEL "

32 X 32 InSh CID

2
i00 X I00 Dm Pixels

Filling factor = 80

Q.E. = 50 % at 4K

(SAT)

%

N = 12OO elect. (limit " 500)
e

Integration up to I00 second

5 TO 17 Inn CHANNEL "

32 X 32 Si:Ga (LETI-LIR)

16 -3
2 i0 Ga cm

-i
R = 3 A.W
peak

Direct readout MOSFET array

Metal bump hybrid circuit
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SIRTF- THESPACEINFRAREDTELESCOPEFACILITY

1. Introduction and Background

The potential benefits of the advanced infrared detectors discussed
elsewhere in the volume can be realized only if they are operated under
conditions of very low infrared background. These conditions are
provided by a cryogenic telescope in space, for which the infrared
background brightness is approximately ten million times lower than the
background characteristic of an ambient temperature telescope within (or
outside of) the atmosphere. SIRTF - The Space Infrared Telescope
Facility - will be a long-lived, cryogenically-cooled observatory for
space infrared astronomy. By exploiting the low background of the space
environment and utilizing advanced infrared detectors operating at the
background limit in this environment, SIRTF will provide gains in
sensitivity of one to ten thousand over our current capabilities. SIRTF
will provide both tremendous capabilities for the study of known astro-
physical problems and great potential for the discovery of new phenomena
in the Universe. The scientific and technical rationale for SIRTF, and
its capabilites in comparison to those of other infrared telescopes such
as IRAS, are discussed in greater detail in References i and 2.

SIRTF has been under study by the NASA/Ames Research Center, members of
the scientific community, and the aerospace industry for more than a
decade, and it has consistently been awarded the highest priority by
scientific peer review groups. The SIRTF Science Working Group and the
instruments for definition study were selected by NASA in the summer of
1984. Current plans call for initiation of the industrial Phase B
studies for the facility in 1987 or 1988, leading to launch in 1994.
SIRTF will be an observatory for the entire scientific community, and the
bulk of the observing time over SIRTF's lifetime will be used by General
Investigators. It will be an essential member of a family of space
observatories operating across the electromagnetic spectrum and providing
a multi-spectral approach to astrophysical exploration.

2. The Observatory and the Mission

The current design for SIRTF telescope is shown in Figure 1, and the
basic performance parameters of the system are given in Table i and
compared with those of the successful IRAS mission. The SIRTF concept
shows direct heritage from IRAS, particularly in the area of cryogenics.
The SIRTF cryogen system, using liquid helium as the coolant, maintains
the optics and the baffles at temperatures of IOK and below. This will
allow SIRTF to achieve natural-background limited performance at
wavelengths out to 200um and very high sensitivity out to the long
wavelength limit of 700um. The basic optical form is Cassegrainian, with
space chopping provided by the secondary mirror. The infrared radiation
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is reflected to one of several focal plane instruments arranged circum-
ferentially about the optical axis, while the optical image passes
through to a visual star tracker. Mirrors made of fused silica or,
possibly, an advanced beryllium fabrication process will permit achieve-
ment of diffraction-limited performance at SIRTF's shortest operating
wavelength of 2um. The sub-arcsecond pointing stability and accuracy
required to exploit this image quality will be achieved by spacecraft
body pointing updated by signals from the star tracker within the
instrument chamber.

Several options, including use of Multi-Mission Spacecraft (MMS) modules
or the use'of a co-orbiting platform to be developed as part of NASA's
Space Station program, are under consideration for the SIRTF spacecraft.
In either case, SIRTF would be carried into space by the Space Shuttle
and boosted by the Orbiting Maneuvering Vehicle (OMV) to the final
orbital altitude of 900km. The Science Working Group, working together
with the SIRTF Study Office at the Ames Research Center, has selected
a 28 degree inclination orbit for SIRTF in preference to the polar, sun-
synchronous orbit by IRAS. The lifetime for the initial cryogen load
will be at least 2 years. Means of resupplying the cryogen in space to
permit achievement of an ultimate lifetime of 5 to I0 years are under
active study.

3. Focal Plane Instrumentation

Three instruments are under definition study for SIRTF. Their
characteristics are outlined in Table 2. Together these instruments
cover wavelengths from 2 to 700um and provide the capabilities-
photometry, polarimetry, high time resolution, low-to-moderate resolution
spectroscopy, and both high spatial resolution and wide-field imaging -
required for the study of a wide range of astrophysical problems.
Optimizing dectectors to take full advantage of the unique environment
provided by SIRTF and other cryogenically-cooled space telescopes
presents major technological challenges. Consequently, intensive
investigation of detector and cold electronics technology issues will be
the main focus of the instrument definition activity over the next year.
Contributions elsewhere in this volume provide detailed discussion of the
current status of detector development for SIRTF.

4. Current and Future Activities

Over the past year, the Science Working Group and the SIRTF Project have
completed an extensive review of the long-life SIRTF mission, which
included the choice of the orbit and refinement of the scientific goals
and the related mission performance requirements (3). Definition studies
for the SIRTF observatory and mission will be continued during the coming
year. Particular emphasis will be given to the SIRTF spacecraft; to
maintenance and refurbishment issues, including cryogen transfer in
space; and to developing baseline plans for mission and science
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operations. Work on the telescope system will concentrate on high
technology areas such as cryogenics, optics and pointing. Laboratory
development and test of protoflight hardware will be supplemented by
analytical studies using the extensive system modeling capability now in
place at the AmesResearch Center. The work on both the instruments and
the facility is pointed at advancing the definition of the SIRTFmission
in a careful but efficient manner in preparation for the facility Phase B
studies, leading to the initiation of the final design and development
SIRTFat the end of the decade.

5. Conclusions

These few pages provide only a quick overview of the tremendous amount of

work which has been carried out to bring the SIRTF mission to its present
state of readiness. Further information is available in the references

listed below or from the author of this paper. SIRTF will be a facility

for the entire scientific community, and comments and reactions from

interested scientists are always welcomed.

6. References

I. "SIRTF - The Next Step," by F. C. Gillett and M. W. Werner,

NASA TM #86663, 1984. Reprinted in NASA Conference Publication 2353,

"Airborne Astronomy Symposium", eds. H. A. Thronson and E. F. Erickson,
1984.

2. "Infrared Astronomy After IRAS," by G. H. Rieke et al.

(accepted by) Science (in press; to appear in 1986).

3. "SIRTF - The Space Infrared Telescope Facility," by

M. W. Werner et al. SPIE Paper 589032, presented at November 1985
SPIE conference on "Instrumentation for Optical Remote Sensing from

Space," Cannes, France.
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TABLE 1. BASELINE SPECIFICATIONS FOR SIRTF

WITH IRAS PERFORMANCE FOR COMPARISON

PARAMETER

PRIMARY MIRROR DIAMETER

EFFECTIVE COLLLECTING AREA

WAVELENGTH COVERAGE

DIFFRACTION-LIMITED

PERFORMANCE

IMAGE DIAMETER

POINTING STABILITY

FIELD OF VIEW

MODULATION

CRYOGEN

CRYOGEN TEMPERATURE

OPTICS TEMPERATURE

MODE

LIFETIME

SIRTF

0.85 M

0.58 M

1.8 TO 700 MICRONS

2 MICRONS

0.6 ARC SEC

0.15 ARC SEC RMS

7 ARC MIN

SECONDARY MIRROR
ARTICULATION

SUPERFLUID HELIUM

1.8 K

<5 K

OBSERVATORY

>5 YEARS

IRAS

0.60 M

0.22 M

8 TO 120 MICRONS

15 MICRONS

6 ARC SEC

2 ARC SEC RMS

60 ARC MIN

TELESCOPE SCANNING

SUPERFLUID HELIUM

1.8 K

<5 K

SURVEY

10 MONTHS

BROADBAND SENSITIVITY*

10 MICRONS

100 MICRONS

ANGULAR RESOLUTION AT

60 MICRONS

SPECTRAL RESOLVING POWER

NUMBER OF DECTECTORS

0.006 MJY

0.1MJY

18 ARC SEC

(DIFFRACTION-LIMITED)

>1000

10,000

70 MJY

300 MJY

90 ARC SEC

(DETECTOR-

WIDTH-LIMITED)

20

60

*SIRTF SENSITIVITY:

IRAS SENSITIVITY:

1 IN 15 MINUTES

1 /SURVEY SCAN
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TABLE 2. SIRTF INSTRUMENT COMPLMENT

Instrument

Infrared Array Camera
(IRAC)

Principal Investigator

G. Fazio, SAO

Infrared Spectrometer
(IRS)

J. Houck, Cornell

Multiband Imaging Photometer G. Rieke, Arizona
(MIPS) for SlRTF

Characteristics

Wide-field and diffraction
limited imaging, 1.8-30um,
using arrays with up to
128 x 128 pixels. Polari-
metric capability.

Grating and prism specto-
meters, 2.5-200um, using
detector arrays.
Resolving power from 50 to
>i000.

Background-limited
imaging and photometry,
3-200um, with pixels sized
for optimum sampling of
the Airy disk. Broadband
photometry 200-700um.
Polarimetric capability.
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SIRTF TELESCOPE ASSEMBLY

SUNSHADE

VACUUM VALVE

, MULTILAYER INSULATION

SUPERFLUID HELIUM TANK

,ELECTRONICS

PRIMARY MIRROR

MULTIPLE INSTRUMENT

CHAMBER

FIGURE 1 - A CUTAWAY VIEW OF T}_ LONG-LIFE SIRTF _PE CONCEPT.
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The Status of the ISO Project

M.F. Kessler, Space Science Department of ESA, Noordwijk, Netherlands

I.Introduction

The Infrared Space Observatory (ISO), an approved and funded project of the

European Space Agency (ESA), will be an astronomical satellite observatory

operating at wavelengths from 3_m to 200_m. ISO will provide an environment

enabling astronomers to derive maxim_ benefit from improvements in infrared

detector technology.

The original proposal for ISO was submitted to ESA in 1979. After several

studies and assessments, a very intensive Phase A study was undertaken in 1982.

As is normal within ESA, this was in competition with other studies,

and in Mard_ 1983, ISO was selected to be the next new start in the ESA

Scientific Programme. The present period is being used to select and start

development of the scientific focal plane instruments and to prepare the ground

for a swift and effective start to the industrial Phase B in 1986 leading to a

launch in late 1992.

This paper summarizes briefly the ISO Project and its status. Section 2 deals

with the overall goals of mission while the Phase A design is outlined in

section 3. The scientific instruments are described in section 4 and current

activities in section 5.

2. Overall Mission

The scientific goals of ISO are to make spectroscopic, imaging, photometric and

polarimetric measurements of selected celestial sources at a sensitivity

approaching the limits set by natural astrophysical backgrounds. More detailed

discussion of the astronomical goals of ISO is contained in references I and 2.

The operations of ISO will be conducted in as near to real time as is possible

by a team of scientists and engineers located at the ground segment. The

majority of the observing time will be available to the general astronomical

community via the submission and selection of proposals; however, some time will

be reserved for the groups building the instr_nents and for the observatory

team.
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3. Summary of the Phase A Design

The 1800kg ISO satellite is dominated by its Payload Module, essentially a

cryostat which contains the telescope and the scientific instruments. The former

is a Ritchey-Chretien design with a 60cm diameter primary mirror and an overall

focal ratio of 15. It provides a 20 arcmin unvignetted field of view which is

distributed to the four focal plane experiments by a pyramid mirror.

Temperatures of 2-3K for the gerlnanium detectors, 7K for the other detectors and

instruments, and around 10K for the primary mirror are maintained for a period

of at least 18 months by a dual openloop hybrid cryogenic system containing 7501

of superfluid helium and 7501 of liquid hydrogen. Figure I depicts the Payload

Module in an exploded form together with a view of the Service Module. The

latter provides the 3-axis stabilisation and other basic spacecraft services

e.g. telemetry, power etc. ISO will De launched by Ariane into a synchronous,

12-hour elliptical orbit.Further details of the Phase A design can be found in

reference 2.

4. Focal Plane Instrumentation

A "Call for Experiment and Mission Scientist Proposals" was issued to the

European and U.S. scientific communities in July 1984. This led to the approval,

in June 1985, of four instruments to be flown. These will be built using

national funding by consortia of institutes.

Two instruments provide the satellite's photometric, imaging and polarimetric

capabilities. The ISO camera (ISOCAM) consists of two 32x32 element

detector arrays operating in the wavelength ranges 3-5_m and 6-17_m. Each

channel contains selectable filters (including circular variable filters),

changeable fields of view and can give polarisation information. The ISO

photometer (ISOPHOT) contains four subsystems: firstly, a multi-band, multi-

aperture photopolarimeter for wavelengths of 3-30_m; secondly a longer

wavelength (30-200_m) photopolarimeter with imaging capability; thirdly, linear

detector arrays for imaging between 2-28_m; and fourthly, a grating spectrometer

with a resolution of around 100 for the band 3-16_m.
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The ISO payload contains two dedicated spectroscopic instruments, the short

wavelength spectrometer (SWS, 4-50_m) and the long wavelength spectrometer (LWS,

45-180_m). Both instruments use combinations of grating and Fabry-P_rot (F-P)

Interferometers to achieve resolving powers of around 104. The F-P's can be

removed from the optical train to obtain a lower resolution, which is

approximately 200 for the LWS and 1000 for the SWS.

5. Current Activities

The ISO Science Team (Table I) has been established. It consists of five Mission

Scientists, the four instrument Principal Investigators (PI's), the Payload

Manager and the Project Scientist.

The role of the Mission Scientists is both to provide scientific input

to the project across a broad astrophysical front and also, to represent the

interests of the general astronomical community. They were selected

competitively following submission of proposals.

Table I: ISO Science Team

C. CESARSKY, Saclay, F

P. CLEGG, Queen Mary College London

Tn. _CRENAZ, Obs. de Paris, F

W. FRANK, ESA/ESTEC, Noordwijk, NL

Tn. de GRAAUW, Groningen, NL

H. HABING, Leiden Obs, NL

M. HARWIT, Cornell Univ, USA

M. KESSLER, ESA/ESTEC, Noordwijk, NL

D. L_4KE, MPIA, Heidelberg, D

A. MOORWOOD, ESO, Garching, D

J-L PUGET, ENS, Paris, F

PI, ISOCAM

PI, L_

Mission Scientist

Payload Manager

PI, SWS

Mission Scientist

Mission Scientist

Project Scientist, Chairman

PI, ISOPHCrf

Mission Scientist

Mission Scientist

Design and development activities are continuing in all of the instrument

consortia in order to meet the delivery dates of autumn 1987 for a mass/thermal

model and end 1988 for the experiment qualification model.
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Within ESA, the ISO project team is being built up at ESTEC in Holland under the

leadership of the Project Manager, Derek Eaton, and will be virtually complete

by the end of 1986. This tea,n is currently discussing with various companies,

including Aerospatiale of France who will be the prime contractor, details of

the industrial development of ISO. There are also a very large number of studies

underway, which are aimed at examining, proving, au_d improving various

technologies and components needed by ISO.

Another area in which the ISO team and industry are actively working is in

assessing the implications of the fact that while the Phase A study assumed use

of an Ariane II launcher, it is now clear that by 1992 this will have been

phased out and replaced by the more powerful Ariane IV. The latter vehicle is

easily adequate for the above mission, however it also permits consideration of

certain options that were firmly excluded during the previous studies. These

options include modifications to the cryogenic system and to the operational

orbit. A detailed technical, scientific and financial evaluation of these

possibilities is underway.

6. Conclusion

ISO is a fully-approved fully-funded project with a selected complement of focal

plane instruments under development. Much preparatory work for an industrial

Phase B start in 1986 is already in progress and more will be undertaken. Thus,

the astronomical community can look forward to the availability in 1992 of a

highly sensitive and versatile Infrared Space Observatory.

7. References

i. Proceedings of the ISO Science Workshop, Alpbach. Eds C.J. Cesarsky and

Th. de Graauw. (Copies available from Th. de Graauw, Groningen Space

Research Laboratory, Postbus 800, 9700 AV Groningen, The Netherlands)

2. Infrared Space Observatory, ESA Report on the Phase A Study. November 1982.

project (page)t SCI(82)6. (Copies available frcm Martin F. Kessler, Space

Science Department ESA, European Space Research and Technology Centre,

Postbus 299, 2200 AG Noordwijk, The Netherlands)
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SHORTWAVE PHOTOVOLTAIC HgCdTe DETECTOR ARRAYS FOR SPACE ASTRONOMY*

A. Sood, N. Hartle, J. Marciniec, and P. Zimmermann

Honeywell Electro-Optics Division, Lexington, MA 02173

OUTLINE

Program objectives

Theoretical considerations

Detector array configuration

Summary/conclusions

*This work has been supported by NASA contract NASW 3688.

Dr. Nancy Boggess.
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Program Objectives

Fabricate short wavelength photovoltaic HgCdTe

detector arrays in a mosaic configuration.

Test and analyze the current-limiling

mechanisms in PV-HgCdTe detector for operation

between 300-77°K.

Deliver HgCdTe arrays lo the University of

Hawaii (Dr. Don Hall)For low temperature and

low background characterization.
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Theoretical Considerations
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Temperature Dependence of Ro of a SW HqCdTe Photodiode

Calculated for Various Surface Recombination Velocities
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Calculated R o vs Cutoff Wavelength at 120°K for Various Surface

Recombinotion Velocities

6'q

V

OC°

1026

lOZ5

1024

1023

I 0zz

1020

1019

1018

lO17

1016

101 5

1014

1013

lO12

w

J

\'_\ _-s o • z.s = lO3 c-/s

,,.-,,,,
| , | • I

1.4 1.8 Z.;_ 2.6

CUTOFF WAVELENGTH (pm)

_1o-23

-10 "22

10 "21 c_
T

"-1O.2o _
|l
C"

-10 "19 /

N

10-18 _

-10 "1 ?

- ,.. _10-16

15-5



Simplified Detector Fabrication Outline
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Mosaic Array Average RoA Temperature Dependence

Shows 6-R Limited PerFormance
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HqCdTe Diodes Provide Uniform Quantum Efficiency With Sharp

Cut-offs
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Device Linearity Over 5 Orders of Magnitude
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RoA Histogram Shows Excellent Device Performance Uniformity on

Short Wave HgCdTe
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High Uniform Quantum Efficiencies Are Obtained on
Short Wave HgCdTe Photodiodes
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Conclusions

(l) Photovoltaic HgCdTe array technology offers a viable

detector for space astronomy applications.

(2) Hosaic HgCdTe arrays show excellent performance

uniformity and high quantum efficiencies at moderate

temperatures (200-120"K). Heasurements are underway at

University of Hawaii to evaluate these arrays at low
temperatures.

(3) Detector performance at moderate temperatures is limited

by generation-recombination currents and at lower

temperatures tunneling currents are expected to dominate

the device performance.

(4) Further performance improvements will require modified

device designs which incorporate techniques for reducing

tunneling currents via multilayer structures.
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Characterization of 2.5 _n HgCdTe Detectors for Low-Background Applications

D. L. DePoy and D. N. B. Hall

University of Hawaii, Institute for Astronomy

2680 Woodlawn Drive, Honolulu, HI 96822

I. INTRODUCTION

Short wavelength (1-3 Pm) infrared detector systems currently in use at ground-

based telescopes are inadequate for background-llmlted performance from space.

Additionally, the usually slngle-channel devices seriously compromise the efficiency

of any scientific program where the objectives include observations of a large area

of the sky with high angular resolution. Therefore, sensitive array detectors and

associated low-noise multiplexers are necessary for use in space-based infrared

astronomical systems.

We have undertaken a program of testing aimed at the evaluation of systems that

have the potential to provide the level of performance required for use in space-

based instruments and to appraise their usefulness to astronomy overall. Here we

report the results of the first phase of the program to characterize selected pixels

of a HgCdTe photovoltaic array detector; no multiplexer devices were tested in this

phase of the program. The array was obtained through a collaborative effort with

Honeywell's Electro-Optlcs Division (see Sood in these proceedings), and our tests

were specifically aimed at extending Honeywell's device characterization at higher

temperatures into the 77-120 K regime of operating temperatures.

The array was composed of 2.6-_n-cutoff wavelength HgCdTe photodlodes in an 8x64

plxel format. Each element had an active area of 100xl00 _m (10 -4 cm2). Within a sin-

gle row, 32 alternate elements were bump bonded to a fan out board to which the

readout electronics were connected. Each plxel was tested individually as though it

were a discrete detector, and therefore the results should be representative of the

entire array.

II. TEST PROGR__ GOALS

The primary goal of the current investigation was to determine the typical cur-

rent versus bias voltage ("diode curve" or "I-V curve") characteristics of the array
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diodes as a function of temperature. The two important device parameters to be deter-
mined from this data are (I) the zero bias impedance, which should be >1015 Q, and

(2) the dark current, which should be <<1017 amps. From these two parameters the lim-

iting sensitivity of the detectors in the absence of other noise sources can be pre-

dicted.

The Honeywell measurements are at temperatures above 120 K. We have concen-

trated on extending the characterization to lower temperatures, between 77 and 120 K.

In this way our measurements around 120 K could be compared to verify consistency

while the lower temperature data is used to investigate the transition of the detec-

tors from theoretical diode behavior to other limitations (e.g., tunneling, surface

leakage ).

III. TEST SETUP AND PROCEDURES

The devices were tested using a MOSFET front-end amplifier, shown in Figure I,

to integrate the diode current onto a capacitor in parallel with the detector.

Standard resistive feedback translmpedance amplifiers are inadequate to measure the

currents through the high impedances anticipated.

A Sillconix p-channel enhancement-mode MFE 823 MOSFET was used as the input

stage because of its extremely low leakage currents at the temperatures at which the

tests were conducted (80-120 K). Measurements made with no detector installed gave a

system leakage current of 45 + 50 e-/s. We found that 2N6484 JFETs (from National

Semiconductor and Intersil) have much higher leakage at these temperatures, on the

order of 500 e-/s. The gain from the MOSFET was 0.78 over the operating voltage

range. A three op-amp instrumentation amplifier (CMRR trimmed to 125 dB) followed

with a gain of 1.2, giving a system gain to the output voltage of 0.94.

%

I

IOPfm  D.U.T +8V

VBIAS

VOFFSET

VOUT

Figure I: Circuit schematic of the preamp used in the HgCdTe characterization tests.
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There were several reasons to use a 10 pf capacitor in parallel with the detec-
tor to measurethe induced currents rather than integrate on the detector capacitance
or on the gate capacitance of the MOSFET.Since I0 pf was substantially larger than
the capacitance of any detector, MOSFETgate, or contact point, there was no need to
redetermlne the integrating capacitance for each measurementto find the absolute
calibration of output voltage to current. Also, the capacitance of the diodes, and
perhaps the MOSFETgates, changeswith bias voltage applied, so relying on them to
integrate the current adds another level of uncertainty in finding the absolute
current. Additionally, the Ag-Mlca capacitors used were carefully measuredover the
operating temperatures for stability and llnearlty, and hence could be relied on to
give valid results.

The general procedure for measuring the diode current as a function of bias
voltage was to (I) set the temperature with a feedback controlled 225 mWheater
(temperature control stable to approximately 1 K at 80 K and approximately 2 K at 120
K), (2) apply the appropriate bias voltage through a mechanical switch, (3) open the
switch and monitor the output voltage's changewith time. Then the current can be
found from

I = C (dV/dt)/g, (i)

where I is the current being integrated on the capacitor, C is the capacitance of the

parallel capacitor (= I0-II f), V is the output voltage, g is the gain, and t is the

time that has elapsed.

IV. RESULTS

A. Impedance Measurements

The first tests were made by putting I0 mV of reverse bias across the HgCdTe

diodes and integrating until the output was 0 volts. By recording the time elapsed,

the average current over this bias range could be found with equation i. If we

assume that the diodes have approximately ohmic behavior around zero bias and that

the diode current will be 0 amps at a bias voltage of 0 volts, then these measure-

ments can be converted to effective device impedances via

R = (5I/_V) -1 IV -- 0

where 81 is the change in the current (= the current measured since we assume that I

= 0 at V = 0) and _V is the change in the output voltage (= I0 mV). As will be seen

below, the assumption that the diodes behave ohmlcally is correct, while the assump-

tion that I = 0 at V = 0 is very poor; this consequently leads to a systematic

underestimation of the diode impedances by roughly a factor of 5 at all temperatures

since the I-V curve passes through zero bias at a substantial negative current, thus

making the slope of the diode curve flatter than if it went through the origin.

Therefore, a correction factor of 5 will be assumed and applied to all the data pre-

sented here.

The tests were done at 80, 90, i00, Ii0, and 120 K on 11 detectors. Figure 2

shows the average impedances determined versus temperature and corrected by factor 5

along with the higher temperature Honeywell data (see Sood in these proceedings). The

two data sets Join well at the common temperature point of 120 K. The transition from

theoretical diode behavior occurs at approximately I00 K at an impedance of about 5 x
1014 Q.
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Figure 2: Average impedances measured in the Honeywell HgCdTe photodiodes plotted

against inverse temperature. Data from 300 to 120 K is from Sood (in these

proceedings).

The uniformity of the array is very good, with ten of the elements tested within

±10% of the mean impedance value at 80 K. Figure 3 shows a histogram of the impedance
values found versus number in a 2.5 x 1013 _ bin. Similar results were obtained at

the higher temperatures.

B. Diode Curves

Diode curves were measured at 80, 100, and 120 K for a randomly selected detec-

tor element to test the assumptions made above. The procedure was to apply a large

reverse bias across the diodes (I00 mV at 80 and I00 K; 200 mV at 120 K) and to moni-

tor the output voltage as the capacitor discharged through the diode. Measuring the

time required for the output voltage to change by I0 mV at 80 and I00 K or by 25 mV

at 120 K gives a measure of the current at that voltage as described in Section III.
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Figure 3: Histogram of HgCdTe photodiode impedances that shows good uniformity in 11
representative array elements.

The measured diode curves are given in Figures 4, 5, and 6 for 80, 100, and 120
K, respectively. A least-squares linear flt to the data gives the slope and offset
for each measurement. The slope of the fits is the impedance of the diode over the

operating range: 5.5 x 1014 Q at 80 K, 5.6 x 1014 Q at I00 K, and 4.0 x 1012 0 at
120 K.

The impedance of the diode measured from the slope of the diode curve is approx-
imately 5 times larger than the estimates from Section IVA due to the obvious zero

point offset in the curves. The behavior of the diode is quite ohmic, however. A chl-

square fit to a thlrd-order polynomial varies from the least-squares fit to a

straight llne by less than 5%, indicating that the slope, and hence the impedance, is
constant throughout the measurement range.

To ensure that the offset was not pecullar to the particular diode tested,
another diode was selected and measured in the same manner. The diode curve found is

shown In Figure 7. Again the detector shows the same zero point offset, within the
experimental uncertainties, as present In the previous detector.

V. DISCUSSION

The preliminary conclusions at thls point in the test program are as follows:

I. At T > I00 K the SWIR HgCdTe plxels exhibit the increase In impedance with

decreasing temperature predicted if the current Is due to bulk material conductivity,

i.e., the impedance increases approximately an order of magnitude for each I0 K drop
In temperature.

2. Over the range 80 K < T < I00 K the plxels exhibit ohmic current-voltage
characterlstlcs with a constant impedance of about 5 x 1014 O.

3. The l-V curve does not pass through the origin.

The transition from the theoretical diode behavior occurs at a temperature of

about i00 K, i.e., where the impedance ceases to increase wlth decreasing temper-
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Figure 4: The current versus voltage curve measured at 80 K for detector #18.

ature. The cause of the transition is unknown. It may be due to tunneling or surface

path leakage effects and be an inherent property of the devices. The ohmic character-

istics of the data, however, do not rule out the possibility that the transition is

created by leakage paths in the device packaging.

The reasons for the offset in the I-V curve from the origin are not completely

understood. One plausible hypothesis (I) is that it is due to a current generator

intrinsic to the devices. In this case the I = 0 point simply represents the balanc-

ing of two currents. An alternate hypothesis (2) would attribute it to a voltage off-

set in the system, such as an uncompensated electronic component offset, diode action

in an Indium bump bond, or thermoelectric effects. The offset is not caused by pho-

tons impinging on the detector, since the detector was enclosed in a completely

li_ht-tlght housing and saw only the radiation shield that was at the test tempera-
ture of 80-120 K.

The temperature dependence of the offset offers lnslght into its nature. As can

be seen in Figures 4, 5, and 6, there is only a slight change in the voltage at zero

current. The variation is not significant and could be entirely due to the experimen-

tal uncertainties. If, for example, the offset is from a voltage source in the elec-
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tronics (hypothesis 2), then the lack of a strong temperature dependenceis entirely
consistent. If, however, the offset is due to a current generator inherent to the
device (hypothesis I), then the current generator must mimic the behavior of the

diode current so as to produce no change from 80 to I00 K, and then a two orders of

magnitude rise from I00 to 120 K. Fewer assumptions can therefore explain the simple

voltage offset than are necessary to invoke in the current generator case. However,

there is no decisive evidence either way. The noise as a function of bias voltage

could perhaps discriminate between the two hypotheses, since the noise minimum would
be offset from "zero current" if two currents are involved.
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Figure 5: The current versus voltage curve measured at I00 K for detector #18.
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Figure 6: The current versus voltage curve measured at 120 K for detector #18.
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Figure 7: The current versus voltage curve measured at 80 K for detector 4122.
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I. Introduction

A program of detector evaluation geared toward selection of a suitable

near-infrared detector for use either on groundbased telescopes or Space

Telescope has yielded interesting results on a 32x32 llgCdTe array manufactured

by Rockwell International (Thousand Oaks). The original goal for groundbased

use was selection of a detector to be used in conjunction with the Steward

Observatory Transit Telescope survey, and the array described below will not

only satisfy the needs of this project, but also will replace the liquid-

helium cooled InSb aperture photometers which have been extensively used at

the Observatory.

Second generation Space Telescope instruments may well include infrared

systems with particular emphasis on near-infrared wavelengths. Virtually all

high-sensitivity groundbased work has used InSb detectors, but HgCdTe may be

an important alternative, especially for the Space Telescope environment where

detector operating temperatures lower than 60 K n_]y be difficult to maintain

over the five-year lifetime projected for second generation ST instrtTnents.

II. General Description of the Rock_ell HgCdTe Array

Figure 1 presents a sketch of the array which consists of back-

illuminated HgCdTe material grown by liquid phase epitaxy on a transparent

CdTe substrate. Planar processing produces photovoltaic detectors. The

detector surface is indium-bonded to a four-phase surface channel CCD used as

a readout device. In prinicple, the detector surface could be indium-bonded to

other readouts such as the MOSFET direct-out developed by Hughes although none

of these alternative readouts were available for testing. HgCdTe detectors

have also been grown on sapphire substrates; this combination yields higher

quantum efficiencies because of the more favorable index of refraction of

sapphire relative to CdTe (Rode, private communication, Herald and Harper

presentation at this conference).

Table i: Physical Properties of the Rock_ll HgCdTe 32x32 Array

Detector Material

Cutoff Wavelength

Readout

Pixel Size

Pixel Spacing

Detector Type

Hg0.6 CdTe

2.52 pm

4-_]ase C_D

68 )_n x 68 pm

75 pm x 75 _n

Photovoltaic
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As showm in Figure i, the CCD uses a direct injection gate to move the

generated charge into the CCD storage wells. The CCD has large wells but

suffers from high read-noise which can be overcome in high-background

operation by integrating long enough for the background noise to be larger

than the read noise. On ST using diffraction-limited pixels at 2_m, the

integration time required for background-limited operation with this readout

would be prohibitively long.

The detector material exhibited superior qualities such as low dark

current and good quantum efficiency as demonstrated later in this paper. The

cutoff wavelength of 2.51]m is well-suited to use on the ground and ST where

large thermal backgrounds dominate at longer wavelengths. In fact, this cutoff

actually simplifies the design of systems to be operated at I-2.5_m because

extensive cold baffling as is required with detectors like InSb (cutoff

wavelength of 5jim) is unnecessary. This material is also very convenient from

the standpoint of performing well with cooling to only 88 K as opposed to the

4 K required for optimum performance of InSb at these wavelengths (Rieke et

al. 1981).

III. Method of Operation

The CCD was operated with the full four-phase clocking to ensure the

maximum possible well-depth. The array has been operated in the staring

mode.The clocking circuitry was built from discrete components allowing

relatively easy adjustment of the clock pulse shapes. Some departures from

standard CCD readout practice were made in the following areas. Because of the

small number of pixels involved, we decided to have the double-correlated

sampling of the voltage from the CCD output amplifier done not by an analog

device but rather by two separate digitizations with the A/D converter. This

method has the benefit that any pick-up of clocking pulses on the output line

can be eliminated from the final signal by choosing the sampling points

appropriatel_ Figure 2 presents the readout electronics and data acquisition

computer in block form.

The signals were digitized using a 12-bit A/D converter with either a

gain of 1 or a gain of 4.7 before the A/D converter. This arrangement was

satisfactory for the laboratory test described in Section IV. but was

inadequate for simultaneously digitizing the full dynamic range of the CCD and

the read-noise. This resulted in the observational data reported later in this

paper being limited by the digitizer noise rather than background or read-
noise.

The digitized signals were fed into a microcomputer which did the double-

correlated sampling and provided various data recording facilities. The

computer was able to handle up to 10 frames/second so it imposed no further

limitations beyond those imposed by the accuracy of the A/D converter.

All tests were performed with the array cooled with liquid nitrogen to a

nominal temperature of 8_ K although the actual temperature of the array was

probably nearer to 9@ K for most of the laboratory tests. The array mounted on

a ceramic chip carrier which was in turn mounted on a copper substrate which

was bolted to the copper work surface of the dewar. A thin nylon washer was

inserted between the substrate and work surface to prevent thermal shock from

cooli.ng the array too rapidly. Unfortunately, the arrangement of the array on

its carrier prevented mounting of thermal sensors close to the array.

External warm filters were used with cooled relay optics inside the

dewar. None of the readout electronics were operated at cyrogenic

temperatures.
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III. Laboratory Tests

Weused two different arrays during_ our evaluation, a "bad" array which
has only 40%of its pixels active and a "good" array which has more than 95%
of its pixels active. Both arrays were subjected to a battery of laboratory
tests and both were used on telescopes. The only difference between the two
arrays was the numberof active pixels with the good pixels in both arrays
having identical properties. The bad array has been cycled from room
temperature to 8_]K and back more than 30 times with no change in its
proper t i es.

Table 2: MeasuredProperties of the Rockwell IIgCdTe32x32 Array

Quantumefficiency @l._im

Readnoise

Dark current @80 K

Well depth

Linearity 0.4%-80%full well depth

Uniformity

70%

1100electrons

880 electrons/sec

5 x 106

99.57%

87%of all pixels within
5%of average sensitivity

A.QuantumEfficiency

The quantum efficiency was measuredusing a blackbody operated at 1270K
with a standard H (l.6|]m, 0.4probandpass) filter mounted outside the dewar.
q'ne quantum efficiency at other wavelengths can be read from the graph in Rode
(1983). If a sapphire detector substrate had been used rather than CdTe, the

quantum efficiency would be near 90%.

B. Read Noise

The read noise was determined from a series of frames taken under

identical conditions. The counts in a sample of pixels distributed uniformly

across the array were compared with the variance in the counts being

attributed to read noise. The measured value in Table 2 is typical for the

surface channel CCDs used with infrared detectors. The read noise as a

function of signal strength was also examined and found to vary as the square

root of the signal read out with no evidence for excess read noise at high (

80% of full-well depth) signal levels. This lack of excess noise is crucial to

successful application of these devices in moderate to high background
conditions.

C. Dark Current

The dark current was measured using a cold shutter to blank the detector
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with an 80 K surface. This was the only parameter found to be significantly

different from values supplied by Rockwell and was found to be substantially

smaller. The discrepancy is due to Rockwell's use of a 300 K blocker rather

than a cold blocker. The array was left to accumulate charge in the dark for

periods ranging from i@@ to 20@0 seconds to derive the value quoted in Table

2. This value is to h_ com[_ared with a dark current of 6@(]@@ electrons/second

for InSb with 9g]mxg@j]m pixels bonded to a CCD and measured at 6@ K (Forrest

et al. 1985). The dark current for InSb roughly doubles for each degree above

60 K (Forrest et al.) making it nearly useless for operation at temperatures

in the 6@-80K region.

The dark current as a function of temperature for HgCdTe was crudely

measured by pumping on the liquid nitrogen reservoir to lower the temperature.

The lack of a temperature sensor on the detector substrate prevented a

quantitative measurement, but this test showed a drop from 880 electrons/sec

measured a short while after the dewar was filled with cryogen to a value of

6@0 electrons/sec after several hours of pumping. Because the dark current is

potentially the limiting factor in use of HgCdTe materials, further tests with

material not bonded to a CCD are planned to determine how far this material

should be cooled for optimum performance in low background conditions. For

operation at 60 K and above, it clearly appears to be the best detector

material available for use in the _]m region.

D. Well Depth and Linearity

Figure 3 plots the signal readout as a function of exposure time to a 3@0

K surface. The device is linear over a range of @.4% to 8g% of full well

capacity which occurs at 5 x 1@ 6 electrons. Data not plotted on the figure

indicate that the array is not linear at very small signals, but operationally

this is not a problem because either the dark current or background will

provide enough counts to insure operation in the linear region. Injection of

"fat zero" is unnecessary.

E. Uniformity

Only the good array was checked for uniformity. The array was exposed to

a black ambient temperature surface while looking through a K (2.2pm,bandpass

@.5|urn) filter,and the counts recorded in each pixel were compared. This

procedure was done on each of the telescope runs where this array was used,

and the histograms in Figure 4 show that the array has 87% of its pixels

within 5% of the average sensitivity and 95% within 7.5% of the average. This

pattern repeated on both runs with the relative sensitivites of the pixels

essentially constant in time. Note that the black surface used in these

measurements was actually the back side of a guider mirror which may not be

perfectly uniform so that these statistics indicate the minimum level of

un i form ity.

V. Operation on Groundbased Telescopes

The maturity of the Rockwell HgCdTe array can be judged from the ease

with which it has been used in the observatory environment. The array was used

successfully on its first telescope run in April, 1985, and has performed

flawlessly in subsequent runs. Figures 5-8 display some of

its ability to produce photometrically accurate results on a variety of
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astronomical objects. Note that these images were obtained using the same

observing technique as used at optical wavelengths; the array is exposed to

the sky for a period long enough to fill the wells to the 50% level, and then

frames of a uniformly illuminated surface are taken for use in removing the

pixel to pixel sensitivity variations. No sky chopping is used although some

sky frames were taken, particularly when extended objects which fill the field

of view were being studied. Exposure times of up to 8 minutes at 2_m with

0:4 pixels were possible with much longer exposures at the lower background,

shorter wavelengths. Use of cooled filters has allowed longer exposures with

integrations as long as 15 minutes at 1.6um with 0:5 pixels on a ?_25-meter
telescope have been taken.

Table 3: Performance at a Telescope

Long integrations possible: 5 minutes at 2.2_m (A_=0.5pm, 0"25 pixels)

gives 40% full wells

Sensitivity:

50 minutes at low-background yields 50% full
wells from dark current

K=+20.7, one-sigma in one hour for 0725

pixels on 2.25-meter telescope assuming

12 5 minute integrations

Noise: Not degraded at high signal levels with

read noise=1380 electrons at 25% full-well

Warm filters and 12-bit A/D converter limited performance in these tests.

The sensitivity on the sky was limited by the A/D inadequacy mentioned

earlier where the least significant bit corresponded to 4000 electrons.

Another limitation was imposed by the use of warm filters. In spite of these

limitations, the one-sigma sensitivity in one hour for one 0_5x0_5 pixel at

K(_2_m) was +2_7 using 12 5 minute integrations on the Steward Observatory

2.25-meter telescope, comparable to the +18.7 for a liquid helium-cooled InSb

detector using cooled filters and an 8" aperture. When the filter and A/D

improvements are implemented, the HgOdTe array will outperform the InSb

detector including the factor for the difference in background between the

_:25 pixel size of the array and the 8"pixel for the InSb.

VI. S_mary

The 32x32 Hg(3dTe array manufactured by Rockwell International has proven

to be a highly competitive detector type for use at wavelengths shorter than

_5um. The goal of a K=+I6 sky survey using this array attached to the Steward

Observatory Transit Telescope is clearly within reach. The detector material

exhibits high quantum efficiency and low dark currents indicating that its

usefulness may extended beyond its use with aCCD readout on groundbased

telescopes.
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ABSTRACT

In IR astronomy observations, one of the key detector performance param-

eters is the dark current which, together with the optics, establishes the

fundamental limit of a space-based instrument.

This technical note summarizes a SBRC-funded effort to measure dark

current performance of the MLA/SWIR 2 PV HgCdTe array (2.5 _m cutoff) at

temperatures from 65K to 120K. The preliminary results indicate that dark

current decreased systematically to 100K, then the value became measurement-

limited at about 3.0 E-18 A/pixel, or 19 electrons/sec/pixel.

I. INTRODUCTION

The MIA/SWIR PV HgCdTe hybrid array developed at Santa Barbara Research

Center was designed for push-broom type of imaging. The critical device

parameters are summarized in Table I. Note that the array was designed to

operate at earth-looking background and at a much higher temperature. The

photon flux range is from 3 × I0 II to 1014 photons/cm2/sec with a nominal

value of 4.7 x 1013 ph/cm2/sec. The nominal operating temperature is 175K.

The MLA/SWIR array was selected for the dark current testing due to the

following reasons:

I.

.

the pixel size is similar to the pixel size for the Hubble Space

Telescope (HST) mission.

the cut-off wavelength of 2.54 _m corresponds to the HST's

requirement.

Ipresented at the IR Technology Workshop, Aug. 13-14, 1985 at NASA/Ames

2The MLA/SWIR array program was funded under NASA contract No. 5-27-583.
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3. the hybrid is in existence and the performance is well docu-
mented(see references I, 2, and 3).

The MLA/SWIRhybrid is a 256-element array indium bumpedonto a fanout

board, which is electrically connected to a silicon feedback-enhanced direct

injection (FEDI), direct readout multiplexer. In this study, we systemat-

ically cooled the hybrid to investigate the effects on the dark current val-
ues.

Table i. MLA/SWIRARRAYCRITICALDEVICEPARAMETERS

Pixel Junction Size

Optical Area
Pixel Capacitance
Average Sense Capacitance
Nominal Detector Bias

Pixel Size-Number product
Cut-off Wavelength
Average QuantumEfficiency

Average RoA(at 145K)
Array Configuration

18 _mx 18 Bm
23 _m x 23 _m
< 0.39 pF
0.15 pF
20 mV (Reverse)
5.9 mm

2.54 _m
0.65
5 x 106 _ cm2

256 x 1

II. ANALYSIS

The schematic of a unit cell of the MLA/SWIRhybrid is shown in Fig-

ure I. Under normal operation, photon induced current generated by the de-

tectors is integrated in a CCDwell under the _INT gate when_INT is held

high. When_INT is pulsed low, this charge is transferred to the CCDwell

under the VSTO/VTRgate. This charge is then transfered to the output sense

capacitor when the combination of the appropriate address clocks and _TRare
pulsed high. Thesignal is then read out through the output source fol-

lower. The normal frame rate (output from 256 pixels) is 1.6 ms.

The dark currents of interest are on the order of 10-16 to 10-18 amps.

This requires slowing the frame rate to one frame every I00 to 3000 seconds,

and subsequently requires modification of the device clocking/operation. The

first technique attempted was to integrate charge on the output sense capaci-
tor by stopping the reset clock operation at 65K. The experiment failed
because of two reasons:
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I. the sense capacitor leakage overwhelmed the dark current to be

integrated.

2. the input circuit barely functioned due to freeze-out.

The second attempt was to integrate charge in the second CCD well (under the

VSTo/VTR gate). This was accomplished by holding _TR low. This prevents the

charge from being transferred to the output sense capacitor until completion

of the desired integration time. The third method tried involved integrating

charge in the first CCD well (under the _INT gate). This involved keeping

_INT high for the desired integration time. Both methods were used in this

study and both methods proved to be successful.

The optimum operating conditions were determined by letting in the 300K

blackbody flux at a given temperature. The dewar was then opened to cap off

the hybrid. Then the array was recooled to make certain that the hybrid

reached a steady-state temperature.

, VDD 1
VSCR6

I. !

Vin

VDET COM

VSSI VC

#PINT VST1 VTR QTR 'VRESET _RESET VDD-QUT

VSCR1]" _ _ AO AI A2
I ,,DRAIN ___.m.._I __ j I __S

VORAINI

VscR' l_-

f  ,-Lt , L

"1=- L Vou T

DETECTOR
DIFFERENTIAL CHANNEL RESET AND DRO DECODER

FEEDBACK STRUCTURE SENSE CAPACITOR

AMPLIFIER

Figure i. Unit Cell Schematic of Detector/

Preamplifier/Multiplexer Structure
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The dark current value I was computed with the following formulas:

VC
I w

TA ' (I)
v

where C is the average sensing capacitance (0.15 pF), Av is the readout source

follower voltage gain (0.9), T is the integration time and V is the output

voltage in volts. Since the limiting resolution of the system is about i0 mV,

the approximate integration time needed can be readily computed:

I0 × 10-3 × 0.15 × 10-12 1.67 × 10-15

T(sec) = 1(0.9) = I(A) " (2)

Therefore, if the expected value is i00 electrons/sec/pixel (or 1.6 × 10-17A),

then the integration time needed is about I00 seconds.

III. MEASUREMENTS

The first measurement was carried out at 65K using the first CCD well and

the second CCD well for a 75-mlnute period. It was found that the average

values of 3 × 10-18A and 6 × 10-19A were below the limiting resolution.

Subsequently, the temperature was raised to 80K and no apparent gains in dark

current were observed beyond those at 65K.

At 100K, the dark current was integrated in the first CCD well for 75

minutes; the measured average value of 3.02 × 10-18A was just below the meas-

uring resolution. The skyline plot of dark current versus detector element is

shown in Figure 2. Note that only half of the array was functioning due to a

setup difficulty which was remedied later. The skyline plot seemed reasonably

uniform except for about I0 "hot pixels".

Figure 3 presents the skyline plot for 11OK temperature. The signal was,

again, integrated in the first well for five minutes. The data showed wide

scatter with the standard deviation (sigma) greater than the mean value. At

120K, the charge integration took place in the second well. Two measurements

were made and the results are shown in Figure 4 (T = 50 sec) and Figure 5

(T = 2 min). The respective average dark currents are 6.8 × 10-16A and

4 × 10-16A, also with sigmas on the same orders as the average values.
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IV. DISCUSSIONS

Table 2 summarizes the data from this study. This preliminary data set

shows that a systematic decrease of dark current with reducing temperature is

evident. The uniformity in terms of sigma-over-mean is somewhat greater than

desired. It demonstrates that the SBRC 2.54 _m HgCdTe hybrid is able to

achieve a per-pixel dark current value of less than i00 electrons. It is also

believed that more measurements are needed to check the repeatability of these

measurements. The last column in Table 2 lists the dark, normalized currents

with the optical area of 5.2 x 10-6 cm 2. The data were plotted in Figure 6

for comparison with the existing HgCdTe diodes.

Temp

K

120

II0

I00

65

% of Pixels

Considered

68

91

92

I00

Table 2. Dark Current Data Summary

Average Current

Amps Elec/sec/pixel

5.7 E-16

3.3 E-17

3.0 E-18

3.0 E-18

3,562

206

19

19

Sigma/mean

1.46

1.46

0.3

N/A

Dark Current/Area

A/cm 2

i.I x I0-I0

6.3 x 10-12

5.7 x 10-13

5.7 x 10 -13

Since the theoretical dark current density follows the diode equation:

qv

AI - Js[eBkT - I] A/cm 2
o

where A° = the optical area of diode (5.2 x 10-6 cm 2)

q = the electron charge (1.6 x 10-19 Coulombs)

B = 2 for G-R limited diode

V = diode bias voltage in volts

k = Boltzmann's constant = 8.62 x 10 -5 eV/K

Js = the saturation current defined as

Ro = the diode impedance.

BkT

q(RA )
o o

in A/cm 2
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The Js data for the existing larger diodes (between 10-3 cm 2 to 10-5 cm 2)

are calculated from the measured RoA o values. It is obvious that the smaller

diodes exhibit greater Js" The current measurements show a steeper slope than

the prediction. It also shows a somewhat less value than the larger diodes.

From the application point of view, it can be concluded that if a focal

plane performance is dark current limited (for low background application) the

MLA/SWIR hybrid (or any 2.54 pm hybrid) should be able to meet the I00

e/sec/pixel requirement at 100K. It is also felt further investigations are

needed in the area of dark current behavior for astronomical observation.
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N87-13723
Test5 of HgCdTe-on-Sapphire

Focal Plane Arrays

Mark Hereld and D.A. Harper

University of Chicago

I. Introduction

In recent months we have received several sample HgCdTe diode

arrays from the Rockwell International Science Center for the purpose of

testing them for use in low background astronomical applications. These

include several diode arrays for use in laboratory tests of material

properties and one partially functioning 64x64 element imaging array

These devices are similar to focal plane arrays designed for use in an

airborne imaging spectrometer. 1 Their development has been sponsored by

tl_e Jet Propulsion Laboratory, California Institute of Technology.

With the sample HgCdTe diodes we have begun to characterize RoA as

a function of temperature and cutoff wavelength. Measurements to date

show RoA greater than I011Q-cm 2 for material samples with cutoff

wavelengths of 2.5 ]Jm and 3,5 ]lm, In this range, measured currents do not

deviate from those expected in the generation-recombination limit.

The imaging array is a HgCdTe-on-sapphire detector array mated to a

silicon CCD readout substrate. Although the active area of the array is

limited to a contiguous 20% along one of its sides, the CCD readout

substrate is fully functional. We have built a camera dewar and

associated telescope-mounting hardware, assembled clocking and readout

electronics, and begun preliminary tests of the camera In the lab and on

the 24" telescope at Yerkes Observatory.

In this paper we will describe the general architecture of the imaging

array, some merits of HgCdTe-on-sapphlre as a detector material, and the

current status of our lab tests and SWIR camera.
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2. Architecture

This kind of detector array is known as a "backside illuminated

planar hybrid focal plane array" 2,3.4 The hybrid FPA (for short) is made up

of two parts, the detector array and the signal processor, mated via an

array of deposited indium columns labelled as "flexible metallic

interconnect" in FIG I. In addition to providing a space-efficient

electrical connection, the array of metallic columns also provides a

flexible mechanical joint that is tolerant of the relative strain between

detector array and signal processor introduced by cycling the FPA between

room temperature and its cryogenic operating temperature.

Different schemes for fabricatingthe array of detectors have been

developed and discussed Indetailelsewhere.5.6.?The highest yield has

been attained by liquid-phaseepitaxy on sapphire substrates,a process

called PACE (ProducibleAlternative to CdTe for _pitaxy). The sapphire is

durable,inert,transparent(to 5.5pro), inexpensive,and available in large,

regularlyshaped blanks. A thinCdTe buffer layer isfirstepltaxiaIly

grown on the sapphire. The alloyedHgCdTe is then grown on the CdTe. The

n-on-p junction is created by positive ion implantation. Because of its

superior crystallographic properties, more uniform epitaxial arrays can be

grown on sapphire than on CdTe.

The multiplexer used in the array we have incorporated into our SWIR

camera is a parallel-to-serial CCD. Sixty-four shift registers in parallel,

one for each column of the array, feed a single high speed shift register

which presents the charge contents of each row, pixel by pixel, to an

output circuit. This is very similar to the familiar optical CCD

architecture except that the photo-electrons aren't produced in the silicon.

3. Performance

HgCdTe, as an alloyof HgTe and CdTe, has a bandgap which can be

tuned from below O.1 eV to above 10 eV by varying the molar ratioof HgTe

to CdTe. The corresponding cutoff wavelength varies from about I pm to
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above I0 IJm. The relative quantum efficiency as a function of wavelength

has been plotted In FIG 2 for a typlcal diode In a 2.5 Bm cutoff array. The

HgCdTe epitaxy-on-sapphire process yields peak quantum efficiencies in

the range of 60 to 90_ over cJ5_ of the pixel elements of a given array

with a standarddeviationofonlyabout 5_. 1'2'3 A histogramof the

quantum efficiencyfortheelementsof a 32x32 element deviceisshown

inFIG 3 (takenfrom references2 and 3).

HgCdTe with a cutoff wavelength in the 5WIR ( 1 - 3 lim) has a very

high resitance and correspondingly low dark current. We have extended

measurements made at Rockwell 2 of the temperature dependence of RoA to

values approaching I012 (l-cm 2, three orders of magnitude higher than

previous determinations. These values lie on the extrapolated generation-

recombination current limit. The results are shown in FIG 4. These

results are of particular importance for low background applications. They

imply potentially long integration times before dark current saturates the

detector well. Furthermore, because these (and possibly higher) values of

RoA are attained at modest temperatures, long-lived, passive, cryogenic

coolers can be designed for "warm telescopes" such as the Hubble Space

Telescope without recourse to liquid helium.

For low background applications readout noise ls often the limiting

factor in signal to noise ratio. Hybrid FPAs of the kind that we are

currently testing have an RMS readout noise of about 1500 e- This is not

unexpected since they were developed for high signal and background

applications In which a full-well signal of 10 7 e- results in a signal to

noise of 104. However, it should be possible to reduce noise to much lower

levels by optimizing well size and readout circuitry for low background

conditions.

4. SWIR Camera Status

Our current electronics system was assembled using parts from three

different optical CCDsystems. We are fabricating a more portable system

with software-controlled clocking circuitry and improved real-time
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displaycapability.FIG 5 shows the hybrid FPA mounted inside the dewar.

Although our tests of the FPA have only just begun, we have managed

to try the camera out on the 24" telescope at Yerkes Observatory. In the

configuration shown in FIG 6, the dewar is mounted to the telescope with a

single refocusing lens and a K-band filter ( 1.9 - 2.5 Ilm) in the optical

path. FIG 7 shows a picture of Saturn taken with the SWlR camera and

presented in grey scale with no processing of the data.
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FIG 5. The hybrid FPA mounted in the dewar. The dewar cover and cold 
shield have been removed t o  expose the mounting hardware and 
electr ical connections. The array is  mounted on a cold f inger 
attatched to  the cold surface of  the nitrogen reservoir. 

FIG 6. The SWlR camera mounted t o  the 24" telescope a t  Yerkes. 
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FIG 7. Saturn at  2.2 pm. In this unprocessed image of Saturn in the 
K-band the rings are evident. The disc is absent due to absorption 
in the gaseous atmosphere. 
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NS7- 37 4
Si:As BIB DETECTOR ARRAYS*

R. Bharat, M. D. Petroff, J. J. Speer, and M. G. Stapelbroek

Rockwell International Science Center, Anaheim, CA

Highlights of the results obtained on arsenic-doped silicon blocked impurity

band (BIB) detectors and arrays since the invention of the BIB concept a few years

ago at Rockwell International are being presented here to the infrared astronomy

community. After a brief introduction and a description of the BIB concept, data

will be given first on single detector performance. Then different arrays that have

been fabricated will be described and test data will be presented.

OUTLINE

Introduction

Detector theory

Detector performance

Array data

Summary

*Presented at the Infrared Detector Technology Workshop, NASA Ames Research

Center, August 13-14, 1985. Part of the work was supported by a contract from NASA

Ames (Monitor: Craig McCreight).
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BIB DETECTORS

BIB DETECTORS WERE INVENTED AT ROCKWELL INTERNATIONAL AS A

MEANS OF OBTAINING IMPROVED RADIATION HARDNESS IN INFRARED

DETECTORS CAPABLE OF OPERATING AT LONG WAVELENGTHS. OTHER

ADVANTAGES THAT HAVE ALSO ACCRUED ARE OF CONSIDERABLE

IMPORTANCE TO PRACTICAL SYSTEM APPLICATIONS.

THE THINNESS OF THE ACTIVE REGION MAKES IT POSSIBLE TO DESIGN

ARRAYS OF DETECTORS WITH VERY CLOSE SPACING WITHOUT INCREASING

OPTICAL AND ELECTRICAL CROSSTALK. SINCE THE THIN ACTIVE LAYERS

ARE OBTAINED BY EPITAXIAL DEPOSITION, UNIFORMITY OF DETECTOR

CHARACTERISTICS IS SUPERIOR TO THAT OBTAINED WITH BULK

PHOTOCONDUCTIVE DETECTORS WHICH ARE TYPICALLY FABRICATED FROM

FLOAT-ZONED CRYSTALS. IN ADDITION, DUE TO THE DIFFERENCE IN

THE PHYSICS OF OPERATION OF THE DEVICE, BIB DETECTORS DO NOT

EXHIBIT THE VARIOUS ANOMALIES TYPICAL OF PHOTOCONDUCTIVE

DETECTORS, AND THEY ARE NOT AS LIMITED IN THEIR FREQUENCY

RESPONSE.
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BIB DETECTORS

i'111 III- I

• INVENTED AT ROCKWELL TO PROVIDE INHERENTLY LESS NUCLEAR
RADIATION SENSITIVITY WITHOUT COMPROMISING IR DETECTION
PERFORMANCE

• DEMONSTRATED TO HAVE ADDITIONAL SIGNIFICANT
ADVANTAGES

-- REDUCED CROSSTALK BETWEEN CLOSELY-SPACED
DETECTORS IN ARRAY

-- FREE OF THE IRREGULAR BEHAVIOR TYPICAL OF
PHOTOCONDUCTIVE DETECTORS

-INCREASED FREQUENCY RANGE FOR CONSTANT
RESPONSIVITY

--SUPERIOR UNIFORMITY OF RESPONSE OVER AREA OF
DETECTOR, AND, DETECTOR TO DETECTOR
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IMPURITYBAND CONDUCTION

THIS FIGURE SHOWS THE ENERGY BAND DIAGRAM OF AN n-TYPE SEMI-

CONDUCTOR (SUCHAS Si:As) MATERIAL UNDER AN APPLIED BIAS

VOLTAGE*. SINCETHE DOPING DENSITY IS MADE HIGH IN ORDER TO

MAINTAIN A HIGH QUANTUM EFFICIENCYEVEN WITH A THIN IR-ACTIVE

LAYER, THE IMPURITYLEVEL EXHIBITSBAND-LIKEBEHAVIOR. IONIZED

DONOR (D+) CHARGES IN THE IMPURITYBAND CAN BE TRANSPORTEDBY

HOPPING IN THE PRESENCE OF AN ELECTRIC FIELD, RESULTING IN

IMPURITYBAND CONDUCTION.

AN INCIDENTPHOTONOF SUFFICIENTENERGY CREATES AN ELECTRON -D+

PAIR AND BOTH CHARGES ARE COLLECTEDRESULTING IN A PHOTOCONDUCTIVE
GAIN OF 1. SINCE D+ CHARGES ARE REMOVED FROM THE MATERIAL BY THE

FIELD, ELECTRONRECOMBINATIONLIFETIME IS VERY LONG. THE HIGH

FREQUENCY RESPONSEIS LIMITED ONLY BY THE HOPPING MOBILITY OF

THE D+ CHARGES. DUE TO THE SPREADING OF THE IMPURITYLEVEL WITH

HIGH DOPING,THE CUTOFF FOR IR RESPONSEEXTENDS TO LONGER WAVE-

LENGTHS; HOWEVER, IN ORDER TO KEEP DARK CURRENT DUE TO THERMAL
IONIZATIONLOW, THE TEMPERATUREOF OPERATION HAS TO BE SLIGHTLY

REDUCED.

* ANALOGOUSDIAGRAMSCAN BE GENERATED

FOR p-TYPESEMICONDUCTORS
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IMPURITY BAND CONDUCTION

CONDUCTION BAND

IMPURITY BAND

PHOTON

VALENCE BAND

• PHOTON GENERATES ELECTRON (e-) AND IONIZED
DONOR (D ÷)

• CURRENT DUE TO FLOW OF e- IN CONDUCTION BAND
AND D + IN IMPURITY BAND
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BIB DETECTOR CONFIGURATION

ONE POSSIBLECONFIGURATIONFOR EXPLOITINGIMPURITYBAND

CONDUCTIONFOR A PRACTICAL IR DETECTOR IS SHOWN HERE, USING

AN n-TYPE SILICON IR-ACTIVELAYER. *

THE HEAVILY-DOPEDIR-ACTIVELAYER AND THE UNDOPED BLOCKING

LAYER ARE EPITAXIALLYDEPOSITED.

A BIAS VOLTAGE IS APPLIED BETWEEN THE (FRONT)TRANSPARENT

CONTACT AND THE HEAVILY DOPED n-TYPE SUBSTRATE. THE BLOCKING
LAYER PREVENTSD+ INJECTIONFROM THE FRONT CONTACT INTO THE

IR-ACTIVELAYER,SINCE IT IS UNDOPED AND CANNOT SUPPORT IMPURITY

BAND CONDUCTION. HOWEVER,SINCE ELECTRONSARE TRANSPORTED IN

THE CONDUCTIONBAND, THEY MOVE THROUGH THE BLOCKING LAYER AND

ARE COLLECTED IN THE FRONT CONTACT.

* ANALOGOUSCONFIGURATIONSCAN BE USED WITH p-TYPE

SEMICONDUCTORS
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BIB DETECTOR CONFIGURATION

+V fIR PHOTON

TRANSPARENT CONTACT

BLOCKING LAYER (UNDOPED)

IR-ACTIVE SI:As LAYER (N-TYPE)

SUBSTRATE (HEAVILY DOPED N-TYPE)

ELECTRON (e) TRANSPORT IS IN CONDUCTION BAND

IONIZED DONOR (D+) TRANSPORT IS IN IMPURITY BAND
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SPECTRAL RESPONSE

THE RELATIVE SPECTRAL RESPONSE PEAKS AROUND 23 MICRONS.

THE CUTOFF WAVELENGTH IS SOMEWHAT EXTENDED TO LONGER

WAVELENGTHS THAN IS EXPECTED FOR Si:As OF LOW DOPING

DENSITY.

INCREASING THE BIAS VOLTAGE INCREASES THE DEPLETION REGION

AND HENCE THE COLLECTION VOLUME IN THE ARSENIC DOPED SILICON

LAYERS; THE RESPONSIVITY THEN INCREASES AT ALL WAVELENGTHS.

THE SPECTRAL RESPONSE DATA WERE GENERATED BY THE NAVAL OCEAN

SYSTEMS CENTER ON A BIB DETECTOR PROVIDED BY ROCKWELL,
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SPECTRAL RESPONSE OF BIB DETECTOR AT
VARIOUS BIAS VOLTAGES

RELATIVE
RESPONSE

+2.0V

0.1 +l.0V_

-0.50V

+

+ 2.0V

+l.0V

0.01
Si :As

BIB DETECTOR

T = 10K

0.0012 4 6 10 12 14 16 18 20 22 24 26 28 30

WAVELENGTH (MICRONS)
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RESPONSIVITY

ABSOLUTERESPONSIVITYOF AN ARSENIC-DOPEDSILICON

BIB DETECTORWITH A 22 MICRON THICK IR-ACTIVELAYER

IS SHOWN HERE AS A FUNCTION OF DETECTOR BIAS. IT

CAN BE SEEN THAT THE RESPONSIVITYIS EXCELLENT,

THESEVALUES ARE REPRESENTATIVEOF ALL DETECTORS IN

ARRAYSTO BE DISCUSSEDLATER.
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RESPONSIVITY OF BIB DETECTOR

RESPONSIVITY

(AMPS/WATT)
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DARK CURRENT

MEASURED VALUES OF DARK CURRENT DENSITY (ELECTRONS/

CM2-SEC) AT SEVERAL TEMPERATURES ARE SHOWN HERE FOR A

Si:As BIB DETECTOR AT A BIAS OF 1,5V. THE DARK

CURRENT FOR A (100 MICRONS)2 DETECTOR OPERATING AT 7K

CAN BE PROJECTED TO BE LESS THAN 2 ELECTRONS/SECOND,

20-12



DARK CURRENT Sl:As BIB DETECTOR
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NEP

THE NOISE EQUIVALENT POWER (NEP) OF A Si:As BIB DETECTOR

WAS CALCULATED FROM MEASURED VALUES OF DARK CURRENT DENSITY

USING A SHOT NOISE MODEL AND ASSUMING A PHOTOCONDUCTIVE GAIN

OF UNITY, THE MEASUREMENTS WERE MADE BETWEEN 6 AND 16K FOR

THE DETECTOR OPERATING TEMPERATURE AT A BIAS OF 1,5V, IT CAN

BE SEEN THAT BIB DETECTORS ARE CAPABLE OF BEIN_ BACKGROUND
LIMITED AT PHOTON ARRIVAL RATES NB CLOSE TO 10" PER SECOND

(ASSUMING PHOTON WAVELENGTH OF 20 MICRONS AND A QUANTUM

EFFICIENCY OF 50% ON A DETECTOR WITH NO ANTI-REFLECTION

COATING), IN ORDER TO OBTAIN THE NEP OF 10-18 W/H_, IMPROVED

AMPLIFIERS ARE NEEDED FOR READING OUT THE SIGNAL FROM THE

DETECTOR,
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NEP OF BIB DETECTOR
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FREQUENCY RESPONSE

THE SUPERIORITYOF THE FREQUENCYRESPONSE OF BIB DETECTORS

IS CLEARLYDEMONSTRATEDIN THIS COMPARISONWITH EXTRINSIC

SILICON PHOTOCONDUCTIVE(ESPC)DETECTORS AT VARIOUS PHOTON

ARRIVAL RATES.

THE ESPC DETECTOR EXHIBITS THE FAMILIAR ROLL-OFF IN

RESPONSIVITY(CORRESPONDINGTO A DROP IN PHOTOCONDUCTIVE

GAIN),WITH THE FREQUENCYOF ROLL-OFFDETERMINED
BY THE PHOTONFLUX.

THE BIB DETECTOR,HOWEVER, HAS A FLAT FREQUENCY RESPONSE,

INDEPENDENTOF PHOTON FLUX. THE SLIGHT SCATTER WAS DUE TO THE

MEASUREMENTSET UP, WHICH HAS SINCE BEEN IMPROVED. RECENT

MEASUREMENTSHAVE ALSO BEEN EXTENDED BEYOND 2 KHz AND SHOW

THAT BIB DETECTOR RESPONSE STAYS FLAT OVER THAT RANGE.
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FREQUENCY RESPONSE OF BIB
AND ESPC DETECTORS

10 2

10

RESPONSIVITY

(A/W)

0.1

BIB DET (Si:As)
N,= 3 x 10s PH/S

O Ne = 7x 10 a PH/S
X = 15 _M

T = 10K A NB= 4 x 10T PH/S

(-] Ne= 4 x 10e PH/S

<_ NB= 4x 10 9 PH/S

"'0. "_ "'=.

ESPC DET (Si:As)

• Ne= 5 x 10 7 PH/S

• N6= 3 x 10e PH/S

• Ne= 3x 109 PH/S

I I
10 10 2

FREQUENCY (Hz)

• BIB DETECTOR RESPONSEIS

INDEPENDENT OF BACKGROUND

AND FREQUENCY

• ESPC DETECTOR RESPONSE

SHOWS TYPICAL BACKGROUND-

AND FREQUENCY-DEPENDENT

GAIN SATURATION EFFECT

lO 3
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STEP RESPONSE

AT LOW IR FLUX LEVELS, ESPC DETECTORS HAVE BEEN

KNOWN TO EXHIBIT A VARIETY OF ANOMALIES IN ADDITION

TO THE LONG TIME CONSTANT FOR RESPONSE BUILD UP.

BIB DETECTORS, HOWEVER, DO NOT EXHIBIT ANY OF THESE

PROBLEMS AT THEIR NORMAL OPERATING TEMPERATURES, I.E.

ABOVE 6K. CALIBRATION OF DETECTOR RESPONSE CAN,

THEREFORE, BE UNIQUE AND CAN BE RELIED UPON WHEN BIB

DETECTORS ARE USED IN SYSTEMS.

20-18



COMPARISON OF STEP RESPONSE
FOR ESPC AND BIB DETECTORS

• EQUIVALENT RESPONSIVITY AND

DETECTIVITY FOR BOTH DETECTORS

• ESPC DETECTOR RESPONSE EXHIBITS
ANOMALIES

• BIB DETECTOR RESPONSE FOLLOWS
IR EXCITATION UNDER LOW

BACKGROUND CONDITION
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CROSSTALK

THIS FIGURE REPRESENTS SCHEMATICALLY THE

INHERENT ADVANTAGE BIB DETECTORS HAVE OVER

EXTRINSIC SILICON PHOTO-CONDUCTIVE (ESPC)

DETECTORS FOR CLOSELY SPACED ARRAYS, WHILE

THE ESPC DETECTOR IN AN ARRAY MAY COLLECT

CHARGE CARRIERS FROM UNDER SEVERAL DETECTORS,

GIVING HIGH CROSSTALK, THE SUPERIOR ASPECT

RATIO OF THE ACTIVE REGION OF THE BIB

DETECTOR RESULTS IN VERY MUCH LOWER CROSSTALK,
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CROSSTALK IN ESPC AND
BIB DETECTOR ARRAYS

ESPC DETECTOR

ARRAY GEOMETRY

BIB DETECTOR

ARRAY GEOMETRY

-100 i_m

I T
---"" I I_

i f
-20 i_m

100 tJ.m
I I

--" I I --.,,_
i I

-500 p.m

BIB DETECTOR HAS SUPERIOR ASPECT RATIO AND,

HENCE, REDUCED CROSSTALK IN ARRAY STRUCTURE
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BIB DETECTOR TEST DEVICES

AT THE LOWER RIGHT PART OF THE FIGURE IS A 10xl

ARRAY OF BIB DETECTORS, EACH OF WHICH IS BROUGHT

OUT TO A SEPARATE BONDING PAD, AREA OF EACH

DETECTOR IS 100 MICRONS x 250 MICRONS; SPACING IS

25 MICRONS,

THIS ARRAY WAS CHARACTERIZED UNDER CONTRACT TO

NASA-AMES,
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AC TEST CONFIGURATION

EACH DETECTOR WAS BIASED THROUGH A LOAD RESISTOR

AND ITS OUTPUT WAS MEASURED USING A JFET IN A

SOURCE FOLLOWER CONFIGURATION, THE JFET WAS ONE

HALF OF A JFET PAIR WHICH WAS FURNISHED TO ROCKWELL

BY NASA-AMES,
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AC TEST CONFIGURATION
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HEAT SINK AND ARRAY ASSEMBLY

THE DETECTOR ARRAY WAS MOUNTED ON A CARRIER WHICH

WAS ATTACHEDTO A HEAT SINK WHOSE TEMPERATUREWAS

CONTROLLABLEBETWEEN 4,2 AND 16K, THE JFETs WERE

THERMALLY ISOLATEDFROM THE HEAT SINK SINCE THEY

OPERATEDAT A MUCH HIGHER TEMPERATURE,

ONE ASSEMBLY AS SHOWN WAS DELIVEREDTO NASA-AMES

AFTER CHARACTERIZATION.
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HEAT SINK AND ARRAY ASSEMBLY

ARRAY CARRIER

0 0 0 C_M_

JFET
PACKAGE

11

PACKAGE

HEAT SINK BIB DETECTOR
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RESPONSE UNIFORMITY

RESPONSIVITIES OF TWENTY DETECTORS (TWO 10xl ARRAYS)

WERE MEASURED AS FUNCTIONS OF BIAS VOLTAGE. SINCE THE

CURVES FOR THE DETECTORS ARE VERY SIMILAR, THEY ARE

INDISTINGUISHABLE IN THE FIGURE. THE PEAK-TO-PEAK VARIA-

TION AT ANY BIAS IN THE MEASUREMENT RANGE WAS LESS THAN

+ 5%. THE MEASUREMENTS WERE MADE WITH AN INPUT FLUX OF

1.25x1010 PHOTONS/SECOND FROM A PULSED 3.2 MICRON WAVELENGTH

LIGHT-EMITTING DIODE, THIS HIGH DEGREE OF UNIFORMITY IS

DUE PRIMARILY TO THE FORMATION OF THE IR-ACTIVE REGION BY

EPITAXIAL TECHNIQUES.

COMBINING THIS DATA WITH THE RELATIVE SPECTRAL RESPONSE DATA

SHOWN EARLIER, THE RESPONSIVITY OF THESE DETECTORS TO 24

MICRON PHOTONS CAN BE CALCULATED TO BE 13 AMPS/WATT AT A

BIAS OF 1.75V.
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UNIFORMITY OF DC RESPONSE
OF BIB DETECTORS

A

10 0
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Ns =il.25 x 10_° PH/S

= 3.2 _M
T = 10°K

NO. OF DET. = 20 (10 EACH ON 2 DIE)
UNIFORMITY = _+5% PEAK TO PEAK

10 -s I I I
0 0.5 1.0 1.5 2.0

BIAS (VOLT)

• OUTSTANDING UNIFORMITY DUE TO FABRICATION METHOD USED IN BIB

DETECTORS -- ACTIVE REGION IS IN EPITAXlALLY GROWN SILICON

(BULK SILICON USED FOR ESPC DETECTORS HAS STRIATIONS WHICH

CAUSE RESPONSE NON-UNIFORMITIES)
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6x6 BIB DETECTOR ARRAY

THIS PHOTOGRAPH SHOWS A 36-ELEMENT ARRAY OF (150

MICRONS)2 DETECTORS, WITH 50-MICRON SPACING. EACH

DETECTOR IS BROUGHT OUT TO A SEPARATE BONDING

PAD. MEASUREMENTS WERE MADE ON EACH DETECTOR BY

CONNECTING AN EXTERNAL AMPLIFIER TO THE PADS.
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RESPONSIVITY OF 36 ELEMENT BIB DETECTOR ARRAY

THE NUMBER SHOWN WITHIN EACH DETECTOR IN THIS SCHEMATIC OF

THE ARRAY IS THE RESPONSIVITY OF THAT DETECTOR IN AMPS/WATT

TO 3.2 MICRON RADIATION FROM A LIGHT-EMITTING DIODE. THE

MEASUREMENTS WERE MADE WITH A SIGNAL FLUX OF 4.5x10_ PHOTONS/

SEC. AND ZILCH BACKGROUND FLUX. THE RESPONSIVITIES IN THE ARRAY

ARE VERY UNIFORM, WITH THE STANDARD DEVIATION BEING LESS

THAN 1.7% OF THE MEAN.

THE DARK CURRENTS WERE ALSO VERY LOW. THE UPPER LIMIT OF

0.1 pA PER DETECTOR WAS SET BY THE LIMITATIONS OF THE MEASURE-

MENT SYSTEM.
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RESPONSIVITY OF 36 ELEMENT
BIB DETECTOR ARRAY
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10x50 BIBIB DETECTOR ARRAY

THIS PHOTOGRAPHSHOWS AN ARRAY OF (125 MICRONS)2

DETECTORSWITH 25 MICRON SPACING, THE 500 DETECTORS

IN THE BACK ILLUMINATEDBLOCK IMPURITYBAND (BIBIB)

ARRAY HAVE TO BE READ OUT BY A MULTIPLEXERTHAT IS

BONDEDTO THE FRONT OF THE DETECTOR ARRAY BY A METAL

BUMP AT EACH DETECTOR LOCATION,
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MULTIPLEXEDBIBIB DETECTOR ARRAY

ONE POSSIBLECONFIGURATIONFOR A BIBIB FOCAL PLANE ARRAY IS

SHOWN IN THIS SCHEMATICCROSS SECTION (NOT TO SCALE). SINCE

THE ILLUMINATIONIS THROUGH THE SUBSTRATE,THE SILICON

SUBSTRATE HAS TO BE TRANSPARENTAND HENCE UNDOPED. THE BACK

CONTACT HAS TO BE PROVIDEDBY A THIN BURIED LAYER WHICH HAS

TO MEET CONFLICTINGREQUIREMENTSOF TRANSPARENCYTO IR AND GOOD

ELECTRICALCONDUCTIVITYAT THE LOW OPERATINGTEMPERATURES.

THE MULTIPLEXERACQUIRES DETECTOR SIGNALS IN PARALLEL AND READS

THEM OUT SERIALLYWITH THE HELP OF APPROPRIATECLOCKING SCHEMES.

IT HAS TO BE COMPATIBLEWITH THE DETECTOR IN TERMS OF PHYSICAL

DIMENSIONS,THERMAL EXPANSION,ELECTRICALCHARACTERISTICS,

OPERATING TEMPERATUREAND HYBRID FOCAL PLANE FABRICATION.

BY PROVIDINGA REFLECTINGSURFACE ON THE FRONT SIDE OF THE

DETECTORS,THE IR RADIATIONCAN BE REFLECTEDTO PROVIDE A SECOND

PASS THROUGH THE DETECTORSAND INCREASEQUANTUM EFFICIENCY.

ALL THESE ASPECTS HAVE BEEN SATISFACTORILYRESOLVED AT ROCKWELL

INTERNATIONAL.
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MULTIPLEXED BACK ILLUMINATED
BIB DETECTOR ARRAY
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BIBIB DETECTOR/SWIFET MULTIPLEXER

HYBRID FOCAL PLANE ARRAY

THIS PHOTOGRAPH SHOWS A HYBRID FOCAL PLANE ARRAY

CONSISTING OF A BIBIB DETECTOR ARRAY BUMP-BONDED

TO A SWITCHED MOSFET (SWIFET) MULTIPLEXER. THE

HYBRID ARRAY IS MOUNTED ON A PACKAGE, AND THE LEADS

ARE BROUGHT OUT FROM THE MULTIPLEXER BONDING PADS.

THE CENTRAL RECTANGLE IS THE BACK SURFACE OF THE

10x50 DETECTOR ARRAY WHICH OBSCURES THE MAJOR PART

OF THE MULTIPLEXER CHIP.
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BIBIB/SWIFETHYBRID ARRAYS

SEVERAL HYBRID FOCAL PLANES HAVE BEEN FABRICATED

WITH ALL 500 INTERCONNECTSOPERATIONAL, A VARIETY

OF MEASUREMENTSTHAT HAVE BEEN USEFUL BOTH FOR

CHARACTERIZINGARRAYS AND FOR COMPILINGSTATISTICAL

DATA ON LARGE NUMBERS OF DETECTORS HAVE BEEN MADE,

RESULTSOF THESE MEASUREMENTSWILL BE PRESENTED

ELSEWHERE.
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BIBIB/SWIFET HYBRID ARRAYS

• BIBIB/SWIFET HYBRIDS SUCCESSFULLY FABRICATED

• EXCELLENT INTERCONNECT YIELD (_100%) ACHIEVED

• OPTICAL AND ELECTRICAL CHARACTERIZATION
MEASUREMENTS CONDUCTED

m DARK CURRENT
RESPONSIVITY, NOISE, NEP
CROSSTALK
WAVELENGTHS - 10p,m AND 20_m
SINGLE ELEMENT AND ARRAY MEASUREMENTS
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SUMMARY

BIB DETECTORSHAVE BEEN SHOWN TO HAVE EXCELLENTPERFORMANCE

AND TO EXHIBIT SEVERAL ADVANTAGESCOMPAREDTO EPC DETECTORS

FOR LOW BACKGROUNDAPPLICATIONS.

FRONT- AND BACK-ILLUMINATEDARRAY STRUCTURESWITH INDIVIDUAL

AND MULTIPLEXEDREADOUTS HAVE ALSO BEEN DEMONSTRATED.

SOME OF THESE DETECTORSAND ARRAYS HAVE ALSO BEEN TESTED AT

NASA-AMES,NASA-GODDARD,KITT PEAK OBSERVATORYAND

MT. LEMMONOBSERVATORY.

BIB DETECTORSAND ARRAYS ARE OBVIOUS CANDIDATESFOR LOW BACK-

GROUND INFRAREDASTRONOMYMISSIONS LIKE COBE AND SIRTF.
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Si:As BIB DETECTOR ARRAYS

SUMMARY

EXCELLENT LWIR DETECTION DEMONSTRATED

m SPECTRAL RESPONSE

RESPONSIVITY

m NEP

FREQUENCY RESPONSE

CALIBRATABILITY

CROSSTALK/

ARRAY UNIFORMITY

• SEVERAL ARRAY STRUCTURES DEMONSTRATED

10 X 1, FRONT ILLUMINATED, INDIVIDUAL READOUT

6 x 6, FRONT ILLUMINATED, INDIVIDUAL READOUT

10 x 50, BACK ILLUMINATED, MULTIPLEXED READOUT

• SUPERIOR PERFORMANCE FOR LOW BACKGROUND IR
ASTRONOMY APPLICATIONS
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A STUDY OF Si:In HYBRID SURFACE CHANNEL IRCCD DEVICES

Eric Tollestrup and Richard W. Capps

University of Hawaii, Institute for Astronomy

2680 Woodlawn Drive, Honolulu, Hawaii 96822

I. INTRODUCTION

Hybrid silicon IRCCDs are one of several different technologies being

evaluated for use as viable astronomical detectors. We report on a continuing

effort to characterize an experimental IRCCD made by Rockwell International.

This detector was described earlier by Pommerrenig et al. (1983) at the first

NASA-Ames Workshop on Infrared Detector Technology. The device is a Sl:In

photoconductor array which is bump-bonded to a silicon multiplexer. The mul-

tiplexer is a 32 x 32 plxel, four-phase surface channel CCD with 88 _m sepa-

ration between plxel centers. The CCD has overflow protection, and electrical

fat zero (FZ) can be injected at various locations along the signal's clocking

path. A summary of the device parameters is given in Table I.

Table I. Typical 32x32 IRCCD Performance

Parame ter

Spectral response (_m)

Operating temperature (K)

Array configuration (plxels)

Cell slze (_m)

Dynamic range

CTE (f = 500 kHz, FZ = 0)

CTE (f = 500 kHz, FZ = 2V)

Noise (electrons, rms)

Integration tlme (see)

Charge capaclty/plxel (electrons)

Clock rate (KHz)

Power dissipation (mW)

Bias Voltage

Responslvity (A/W at 4.5 _m)

Output FET (_v/electron)

sensitivity

Minimum

2.0

I0

750

1.0xi0-3

250

1.0 x 10-2

0

Typical

30

32 x 32

88

104:1

0.98

0.9998

5000

20 x 106

500

5O

5.0

0.4

Maximum

7.5

45

I0,000
30.0

I000

5.0

I00
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A camera system was made by placing the IRCCD in a standard up-looklng

dewar. One-to-one transfer optics relmage the telescope focal plane onto the

IRCCD. Bandpass filters are located on a 77 K filter wheel. The exit pupil

is matched to a cold Lyot stop, and the optical path is further baffled by a

4 K shield. The IRCCD is thermally isolated so its temperature can be con-

trolled from NI2 to 300 K.

The IRCCD is operated by a mlcroprocessor-controlled electronics system.

This system controls all the CCD gate voltages, timing sequences, integration

times, FZ levels, and other options. The output signal is fed into an

ampllfler/ADC subsystem. Eight gains are available, and either a 12-blt or a

16-blt ADC may be selected. The fastest conversion times for a single corre-

lated double sample of one plxel is 4 _sec at 12-blt resolution and 20 _sec at

16-blt resolution. The digitized signal is stored in a 24-blt-deep high speed

memory. Incoming frames can be co-added or subtracted on the fly from the

stored frames. The digitized image is also displayed on a TV monitor which

views a selectable 8-blt slice of the 24-blt deep image. The control system

is interfaced via a CAMAC module to a host computer which can control the

IRCCD operations and parameters, store images on magnetic tape or disks, and

perform data analysis. In addition, the camera system interfaces to the tele-

scope to control the chopping secondary and beam switching.

The testing and the evaluation was done on a dozen unmated CCD

multiplexers and three mated IRCCDs. The most extensive testing was performed

on the best IRCCD. The devices were tested for transfer efficiency, quantum

responslvlty (G_), llnearlty, dark current, and noise as a function of the

temperature, CCD clock voltages, timing sequences, and detector bias voltage.

The tests were done both in the lab and at the 3-m IRTF telescope.

II. TRAPPING STATES & TRANSFER EFFICIENCY

In a surface channel CCD, the charge is physically stored and transferred

along the interface layer between the Si substrate and the SiO 2 insulator.

The crystal structure of the Si-SiO 2 interface is not perfect though, and many

crystal lattice defects are present. These defects cause the formation of trap-

ping sites that have energy states located in the valence-conduction band gap

region. When a charge packet is clocked into a CCD well, these energy states

trap electrons which would otherwise be in the conduction band. Later, when the

main charge packet is clocked out of the CCD well, the trapped electrons are

retained in what are now excited states. These excited states eventually decay

to release the trapped electrons. Each trapping site has a different emission

time constant, so some electrons are released in time to rejoin the main charge

packet while the remainder are released later to join following charge packets.

The trapping of electrons will affect the CCD multiplexer in three ways. First

it affects the response linearlty as will be discussed in section Ill-iv.

Second, the capture and release process causes fast interface state trapping

noise. This will be discussed in section V-Ill. Finally, the amount of trapped

charge determines the charge transfer efficiency and how much FZ is required.

This will be discussed below.

To better understand all of the above phenomena, it is necessary to measure

the amount of trapped charge as a function of slgnal size. The signal charge

was electrically injected into the multiplexer by the fat zero mechanism. The

results are shown in Figure I. Measurements at both 40 and 300 K are shown.
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For the 40 K results, three main features are apparent. First, for signals less

than about 0.5 million electrons, the trapped charge is roughly proportional to

the signal. In fact, the amount of trapped charge is almost equal In size to

the signal. For thls situation, there are more trapping sites than signal

electrons. Also the effective gate area is increasing rapidly with signal size

(see Figure 9-15 of Dereniak and Crowe, 1984), which increases the number of

trapping sites. Therefore, most of the signal electrons are captured when they

are clocked Into a well and only about two-thlrds are emitted in time to be

clocked forward. This region has very poor transfer efflciency. Second, for

the region between ~I to I0 million electrons, the amount of trapped charge is

constant. This happens because all the trapping sites are filled and the effec-

tive gate size is increasing only very slightly so no new trapping sites become

available. The transfer efficiency is correspondingly very good. In fact,

within the read noise, the amount of trapped charge is constant for signals

between 1.5 to 7 million electrons. Finally, at about I0 million electrons of

signal, the amount of trapped charge rises rapidly. This feature is due to a

very rapid increase in the effective gate size near full well and causes a very

rapid increase in the number of new exposed trapping sites.

Figure I shows that if there are between 1 to 2 million electrons of FZ

in the multiplexer, then all the trapping sites are fllled. If signal electrons

are added to this, the amount of trapped charge is still the same. Therefore,

effectively no signal electrons are trapped. The transfer efficiency in thls
case is about 0.9998.
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III. DEVICE RESPONSIVITY

Two methods were used to measure the quantum responsivlty, G_, where G is

the photoconductive gain and _ is the quantum efflclency--flood illumination

in the lab and Intercomparison of standard star outputs at the telescope. In

each case, the photoconductor was biased by approximately 50 volts, and the

IRCCD was operated at a temperature of 30 K. The quantum responslvitles were

calculated with a pixel size of 88 _m squared so that the effects of the dead

space are included. However, as will be illustrated in section ill below, the

size of the active area of a pixel depends on both Its location and the volt-

age of the multiplexer gates which lle directly below the interplxel dead

spaces. The actual active area is probably closer to 55 _n square. Therefore,

to characterize the quantum responsivity of the photoconductive material itself,

the results should be increased by a geometric scale factor. This correction

produces approximately 2.6 times higher quantum responsivity.

I. FLOOD ILLUMINATION

For the first method, a 600 K blackbody Illuminated the IRCCD focal plane

and enabled the G_ product to be determined for each pixel. A histogram of

the quantum responsivity of all 1024 pixels is shown in Figure 2. The average

quantum responsivity is 35% with a range from 25% to over 100%. About I00

plxels have G_ = 0. These "dead plxels" are probably the result of Insuffi-

cient attachment between the photoconductor and the CCD multiplexer. Most of

these dead pixels are located in the last three columns and the bottom row.
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Figure 2. Histogram of the quantum responslvlty at 3.5 _n.
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ORIGINAL 
1%. CHOPPED IMAGE ILLUMINATION 

For the second method, the quantum respons iv i ty  was measured a t  the tele- 
scope us ing  i n f r a r e d  s tandard  stars. The te lescope  secondary mir ror  was 
chopped between the s tandard  star and the  sky so t h a t  the f i n a l  image con- 
t a ined  only the f l u x  from the standard star. The quantum r e s p o n s i v i t y  was 
def ined  as the t o t a l  number of e lec t rons  o u t  of a l l  1024 p i x e l s  divided’ by the  
t o t a l  number of photons from the s tandard star t h a t  h i t  the  d e t e c t o r .  The 
quantum respons iv i ty  was 35 f 5% a t  3.5 l.4n and 32 * 5% a t  2.2 chi. 

iii. RESPONSE UNIFORMITY 

Two e f f e c t s  c a u s e  a l a r g e r  spread i n  the response his togram than might be 
expected.  Both of them are easily seen by examining a f l a t - f i e l d  image such 
as Figure  3. It shows a black and white image of a f l a t  f i e l d  taken a t  the 
te lescope .  Black r e p r e s e n t s  the l e a s t  responsive p i x e l s  and white  the most 
respons ive  p ixe l s .  The f i r s t  no t iceable  e f f e c t  is t h a t  the outer-most p i x e l s  
are more responsive than those toward t h e  center .  Fr inging  of the b i a s  f i e l d  
a t  the  o u t s i d e  edges of the photoconductor probably causes these p i x e l s  to  
have a l a r g e r  a c t i v e  area than the inner p i x e l s  and thus t o  d e t e c t  more incom- 
ing photons. A spo t  scan of these p i x e l s  would demonstrate t h i s  e f f e c t .  

F igure  3. Image of a f l a t  f i e l d .  Black r e p r e s e n t s  the least responsive and white  
the  most responsive.  
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The second problem is an odd-even column variation which is caused by an

error in the CCD multiplexer masks. This error causes the potential at the

input diffusion, V(ID), of the odd columns to have a different value than the

plxels in the even columns. This causes two effects. First, since the poten-

tial varies from column to column, the potential applied across the photocon-

ductor also varies,

V(det) = V(blas) - V(ID),

and therefore so does the photoconductive gain, G, because it is a function of

V(det). Second, a small transverse bias exists between columns in the detec-

tor array and in the multiplexer. This transverse bias allows the odd columns

to steal charge from the even columns. The two problems are additive in the

sense that the columns which have a larger G also steal charge from adjacent

columns.

iv. RESPONSE LINEARITY

The llnearity of the IRCCD at 3.5 P_n was determined by measuring well-

known IR sources and standard stars. The results are shown in Figure 4, where

the number of photon/sec onto the IRCCD versus the number of electrons/sec out

of the device is plotted for 6 sources. The IRCCD was operated with about 2

million electrons of FZ and at a temperature of 40 K. If the IRCCD is linear

then

S(out) = Gn S(in) _

where a = 1 for a linear detector. A best fit to the data yields a value of

= 1.02 + 0.02.

The device appears to operate linearly in this mode.

However, nonlinearities are possible and under certain conditions are

present in this device. The degree of any nonlinearity of the IRCCD will be the

result of the nonlinearity in i) the detector, 2) the CCD input scheme, 3) the

transfer process, and 4) the CCD output amplifier. The nonlinearity of the

detector material has not been measured. Apparently, though, the above result

indicates that the photoconductor has no appreciable nonlinearities and is con-

sistent with photoconductor theory.

The nonllnearitles due to the CCD input scheme can be seen by examining

individual plxels. Although the whole array is approximately linear in response

to stars, Indlvldual plxels are not. This is due to the odd-even problem dis-

cussed previously. Remember, charge can be stolen or lost to neighboring

plxels, and the bias applied across the detector varies from column to column.

Both of these effects will introduce nonlinearities. However, the reason the

array has a linear response to stars even though individual plxels are not

linear is that while some pixels are indeed losing charge, others are receiving

it and, over the whole array, the charge is conserved.
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Nonlinearities due to the transfer process are present if no fat zero is

used. As Figure 1 shows, the amount of trapped charge is strongly dependent on

the signal size. In fact, those signals which are smaller than about one mil-

llon electrons will have a proportionally much larger fraction of charge trapped

than the larger signals. For example, suppose that after some integration time

we detect 2 x 105 electrons. Only about 105 electrons are clocked out; the rest

are trapped. If, on the other hand, there are 2 x 106 electrons detected,

1.7 x 106 electrons are clocked out. Thus, for an object that is only ten

times brighter, there is 17 times more electrons read out. But if sufficient

amount of FZ is injected, effectively no signal charge is trapped and
therefore no nonlinearities occur.

Finally, nonllnearltles can occur due to the CCD output amplifier which is

a MOS transistor In a source-follower configuration. The output voltage for a

source follower amplifier Is

AV = q gm R / Cn(l+gmR ) (1)

where gm is the transconductance of the MOS transistor, R Is the output

resistor, Q Is the signal charge, and Cn is the node capacitance at the output

diffusion. Cn Is voltage dependent (KIm, 1979) and could introduce nonlineari-

ties Into equation i. The results of preliminary tests show the output ampli-

fier has no measurable nonlinearities In the voltage range that the IRCCD Is
operated in.
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IV. DARK CURRENT

An investigation of the dark current shows that the spatial dependence of

the quantum responsivity is also evident in the dark current. The dark cur-

rent is higher at the edges and it shows an odd-even column variation. Both

are expected because the CCD cannot distinguish a photo-electron from a dark

current electron once they are generated in the photoconductor. Therefore, the

outer pixels have higher dark current because these pixels have larger areas

and thus have a greater volume to generate dark current electrons while the

odd-even column problem follows the same discussion as described in section

lll-iii. Typical dark currents at temperatures between 20 and 40 K are in the

range of several 105 electrons/second (see right-hand side of Figure 5). One

interesting characteristic of the dark current is that it is not constant with

respect to integration time. Figure 5 shows a plot of the dark current versus

integration time at a temperature of 37 K. The dark current varies from ~3.5

to 7.5 x 105 electrons/second over the range of integration times of 0. I to I0

seconds. Why the variation occurs is unknown, but it may be related to a time-

dependent injection efficiency at the CCD input. This hypothesis can be

checked by determining if the same thing happens for photo-electron current.

If it exists for both currents, it is probably a nonlinearity of the CCD input

sche me.

The dark current of the multiplexer alone was measured for one IRCCD.

It had an average dark current of 130 electrons/second and 22 dark current

spikes which occurred during an integration of I0 minutes (these are pixels

which have dark currents much larger, typically an order of magnitude higher

or more, than the average plxel). Based on very preliminary tests on other

multiplexers, this appears to be a representative dark current for all the

multiplexers.
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V. NOISE

There are many sources of noise in an IRCCD which can be broadly classified

into detector noise, multiplexer noise, and electronics noise. The first two

will be discussed below. The electronics noise will not be, other than to say

that it is much less than the total device noise. In addition, fast interface

state trapping noise will be discussed separately because it is the most domi-

nate multiplexer noise mechanism.

i. DETECTOR NOISE

The IRCCDs have excess noise in the signal current which originates some-

where in the detector or multiplexer input area. Until more tests are done, the

source of the excess noise is unclear. It could be excess noise in the photo-

conductor material and the associated electrode contacts, or due to a noisy

input scheme, or be a consequence of the masking error.

ii. MULTIPLEXER NOISE

For certain situations, the noise of the CCD multiplexer becomes the limit-

ing noise source. As an example, the limiting magnitude achievable for our

speckle Interferometry program (where integration times are _0.i seconds) is

determined by the noise of the multiplexer. Therefore the noise was investi-

gated thoroughly so that the IRCCD could be operated at its most optimum con-

figuration.

Five basic noise sources are present in a CCD (Carnes and Kosonocky,

1972; Kim, 1979; Benyon and Lamb, 1980), reset noise, FZ input noise,

output FET noise, transfer noise, and fast interface state trapping noise. The

first three are small compared to the last. For example, the reset or kTC noise

is eliminated through correlated double sampling techniques. The FZ input noise

can be shown to be less than kTC noise (Emmons and Buss, 1974) and the output

FET noise is thermal channel noise and i/f noise in the FET (Carnes and

Kosonocky, 1972). For our device, these noise sources contribute about 100

electrons at a temperature of 30 K.

Transfer noise is due to small amounts of charge being clocked backward

instead of forward. Benyon and Lamb (1980) show that for certain assump-

tions, the noise is

AN = ?(eN t Ns) (2)

where N t is the number of transfers, Ns is the total number of electrons in the

well, and e is the fraction of Ns electrons clocked backwards. As shown in the

next section, there is no evidence for transfer noise, so therefore we assume it

is not present.
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Ill. FASTINTERFACETRAPPING NOISE

As explained in section II, signal electrons are captured and released by

trapping sites in the SI-SIO 2 Interface. Thls process causes each charge packet

to lose electrons to following charge packets and galn charge from proceeding

charge packets and thereby cause fluctuations. The equation for the fast Inter-

face state trapping noise, given in terms of the variance, is

AN 2 = N t Ag f Nss(E) [l-exp(-t_(E)vth Nc exp(E/kT))]

X exp[-t_(E)Vth Nc exp(m/kT)] dE. (3)

N t is the total number of transfer, Ag is the area of the gate, Nss(E) is the
number of trapping states per unlt area per unit energy, E is the energy of

the trapping site below the bottom of the conduction band, _(E) is the elec-

tron capture cross section, Vth is the thermal velocity of the electrons, Nc

is the number of electrons per unlt volume in the conduction band, k is

Boltzmann's constant, and T is the temperature (Tompsett, 1973). To make the

problem tractable Nss(E) and _(E) are usually assumed to be energy independent

which gives the following results:

AN = d (l.4kTAgNssNt). (4)

As discussed shortly, equation 4 accurately describes the relationship

between the noise and the gate area, A= and the number of transfers, N t.
6,

However, it falls to predict the observed dependence of the noise on signal

level. As discussed by Tompsett (1973), we believe that the actual dependence

of Nss(E) and o(E) on energy account for thls failure. Furthermore, equation 3

should be modified to include the occupation index, which describes how the

electrons are distributed in the trapping sites. It is a function of T, Ns, and

the Fermi energy. This term is particularly important when the number of elec-

trons is less than the number of trapping sites and when the temperature is

high. Otherwise, at low temperatures and large signals, the occupation index is

close to unity and may be ignored.

To determine the noise versus signal characteristic, many multiplexers,

both mated and unmated to photoconductors, were tested for noise as a function

of signal slze, gate slze, number of transfers, and temperature. The signal

charge was electrically injected by the FZ mechanism and could be injected at

three sites, the storage gates, the heads of the columns, or the end of the out-

put row. In the case of the mated devices, the detector was disabled and con-

tributed no noise.

In terms of signal slze, all the CCDs exhibited the same basic noise versus

signal characteristics. A schematic representation of it is shown in Figure 6.

Three features are apparent. One feature shows that at about 1 to 2 million

signal electrons, the noise becomes constant at about 1 to 2 thousand electrons.

Another feature Is a general decrease in the noise for signal levels less than

~I million electrons. The third feature is a dip In the noise which occurs at

about 0.5 to 1 million signal electrons. All of these features are probably

reflecting the contribution of the occupation index to the noise. In passing,
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Figure 6. Schematic representation of a typical noise versus signal curve.

note that from equation 2, the transfer noise should exhibit a straight llne of

slope 1/2 in a log(slgnal)-log(noise) plot. As illustrated in Figure 6, the

noise versus signal is not a straight llne and does not parallel the square-root

signal llne (labeled s_) and is the basis for concluding that it is not a

dominate noise source.

In agreement with both equation 3 and 4, the observed noise is proportional

to the square-root of both the gate area, Ag, and the number of transfers9 N t.
Figure 7a shows the noise versus signal for three different combinations of gate

sizes and number of transfers. Although the shapes of the three curves are the

same, the absolute level of each one is different. This is particularly evident

at N s > 1 million electrons. The three noise curves were normalized to an arbl-

trary unit gate size and to i00 transfers. The results are plotted in Figure 7b

and show how the three normalized curves overlap. It is worth noting that the

three curves do not overlap if the noise is corrected only for the number of

transfers or only for the gate size.
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Figure 8. Noise versus

signal as a
function of

temperature.
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The noise versus signal measurementswere repeated for different tempera-
tures ranging from room temperature to 12 K. Figure 8 shows the results from
one IRCCDoperating at temperatures of 250, 80, and 40 K. Measurementsat 30 K
were also madeand are almost identical to those at 40 K. For signals greater
than several million electrons, the noise becomesconstant. If equation 4 were
correct, the noise would be dependent on the temperature. In fact, the noise
at 250 K would be almost 3 times higher than at 30 K. But as Figure 8 shows,
the noise has approximately the samevalue at all the temperatures. However,
the location of the noise dip is temperature dependent. At 250 K the dip is
relatively wide and the minimumoccurs at Ns _ 0.5 million electrons (Figure 8a).
With a decrease in temperature, the dip width narrows and the location of the
minimumshifts progressively to higher signal levels until at 30 and 40 K it
occurs at Ns _ 1 million electrons (Figures 8b and 8c). Although the other
miltiplexers were not examined as thoroughly, they confirmed these results.

Vl. CONCLUSIONS

Although the IRCCDs were experimental, these devices have been useful

astronomical detectors. The kinds of objects that have been observed with

standard observing techniques include Jupiter, Uranus, OH-IR stars, and galac-

tic nuclei. The most thoroughly observed object has been the Galactic Center.

A 3.5 _m mosaic image made up of 64 overlapping frames is shown in Figure 9.
The area covered is 24 x 24 arcsec and is centered on IRS 16 center. The

image incorporates two data sets. The first covers the IRS 16 and IRS 1 com-

plex and has a spatial resolution of about 0.7 arcsec. With this resolution,

Figure 9 shows that IRS 16 complex consists of at least 5 separate objects.

The other data set comprises the rest of the mosaic but is of lower resolu-

tion, a little over 1 arcsec. Astrometry was done to determine the location

of the nonthermal radio source Sgr A*. The position is marked by a cross

about 1 arcsec west of IRS 16-C. No part of IRS 16 coincides with the position

of Sgr A*. In addition, a speckle interferometry program was undertaken to

obtain very high spatial resolution of young stellar objects. Test results on

T-Tau and other double stars shows that this technique can be successfully

done with IRCCDs to obtain _0.3 arcsecond images.

There are a few critical problems that can severely affect the performance

of hybrid surface channel IRCCDs. The most important design criteria is to have

the potential at the input diffusion, V(ID), exactly the same for all pixels.

Without this, the device uniformity and the pixel linearity are degraded, In

addition, this may also cause the device to have excess noise and injection

efficiency problems. Another design augmentation is to have a guard ring on the

perimeter of the detector to prevent field fringing of the bias. The guard ring

will insure that all the pixels near the edge will have the same active area as

those in the center.

There are several operational criteria to follow. The most important is to

use fat zero to fill up the fast interface state trapping sites. There are

three reasons for using fat zero. First, the high transfer efficiencies are

only obtained when FZ is used. By examining the left-hand side of Figure I, it

is easy to see that the amount of trapped charge is almost equal to the signal

size. This corresponds to a very poor transfer efficiency. Second, the use of

fat zero insures that the CCD is linear for both very large signals and very

small signals. Finally, the noise of the CCD can be adjusted to optimize the

signal-to-nolse and transfer efficiency for different kinds of observing

programs. Usually, the IRCCD was operated with a FZ of about 1 million
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electrons. This optimizes the CCD linearity and the transfer efficiency and

keeps the CCD noise multiple_er (N1800 electrons) below the detector noise. For

speckle interferometric obseTVations,,_hera_ the source signals were small, the

FZ was readjusted to give lower total noise (~700 electrons) at the expense of a

slightly lower transfer efficiency.

In conclusion, IRCCDs offer a promising two-dlmenslonal astronomical detec-

tor. Newer devices should obtain excellent spatial uniformity, linear output,

reasonable read noise, and high quantum responsivlty. In addition, future

hybrid IRCCDs should provide larger formats without gaining an unwieldy number

of output amplifiers, clocking lines, and associated electronics. Furthermore,

a variety of detector materials can be used to cover the entire spectral range

from i to 20 _m.
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Abstract

We present a description of the design and performance of

an imaging spectrometer intended for operation in the seven to

fourteen micrometer wavelength range. It is based upon a sixteen

by sixteen element Si:Bi hybrid array, a circular variable filter

wheel, and a microcomputer data acquisition system. The spatial-

spectral photometric performances have been evaluated in the

laboratory as wel! as field tested at astronomical observatories.

The performance characteristics of the system are presented as

wel! as laboratory and astronomica! images.
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I. Review of previous work

In recent years much progress has been made in the field
of infrared astronomical imagery. In the 1970's when monolithic
detector arrays were unavailable to astronomers, single detector
techniques were developed to scan a region of the sky and
reconstruct an image of the region from the detector data set.
The advocates of the single detector technique have developed
procedures for image reconstruction to a high degree of
refinement, by employing the maximum entropy algorithms from
information theory. As a result regions of space have been mapped
down to the limits of the telescope resolution and to the limits
of the single detector sensitivity. Grasdalen et at. (1985) have
expounded the technique used on ground based telescopes quite
skillfully. The IRAS focal plane consisted of an array of' single
element detectors which mapped the entire sky in the far infrared.

In the 1980's, monolithic infrared detector arrays have

become available to astronomers primarily as a spinoff of NASA's

OAST programs. These detectors have been under development for
many years by industry under government sponsorship. These arrays

are demonstrating sensitivities per pixeI equaling and exceeding

those of the best single detectors available. Recent work by

Forrest et al. (1985) has demonstrated an SBRC 32x32 InSb CCD with

superb imaging capability. Pommerranig et al. (1983) have been

able to demonstrate the astronomical potential of Rockwell

developed Si'In CCDs. Arens et al. (1981), Lamb et at. (1983),

and Gezari et al. (1965) have been able to demonstrate that

Aerojet/General Si'Bi CIDs have astronomical potential. Even now,

more arrays are becoming available and in the next few years the
field of infrared imagery will explode the number of observations

and journal publications. The hot new items in the next few years
will be the DRO chips which will have several varieties of

detector substrate materials and cover the wavelength range from I
to 40 microns. BIB detectors will also make a substantial impact

with their promise of near unity quantum efficiencies. Some few

years later the doped germanium array technology will come of age

and imagery will extend out into the several hundred micron range,

where as yet only arrays of single element bolometers are working.

We have developed an instrument based upon a monolithic

infrared detector array for astronomical applications. The
instrument, hereafter called THE INSTRUMENT, it is the prototype

in concept of a new generation of instruments for ground based as

well as cryogenic space based telescope focal plane instruments
Goebel et al. (1983). A similar instrument has been proposed to

NASA as a flight instrument for the SIRTF by Gehrz et al. (1983).

We use the two dimensional array for imaging with a spectral

analyzer to give narrow band wavelength selection. The
instrument, called the Photometric Imaging Near Infrared

Spectrometer, is capable of directly imaging nebulous objects in
the wavelength range from 2 to 17 microns. We present a

description of the instrument and its capabilities.
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microns), and fails quickly below about half of the peak

wavelength (7 microns). A quantum efficiency at 3 microns of less

than 1% is typical. This arises because the quantum yield at an

extrinsic dopant site is wavelength dependent. Hence the array is

only useful for imaging the brightest sources at wavelengths less

than of 5 microns. Astronomically there is a dirth of bright
extended sources short of 5 microns, so we have limited our

observations primarily to planets and most prominently to Venus.

Because of the widespread lack of imaging instrumentation in the
near infrared (I-5 microns), even a relatively insensitive array

can perform useful science. This will become less true in the

future as InSb and HgCdTe arrays become more readily available

(Forrest et al. 1985 and Rode 1984). An example of a Venus

picture is shown in an accompanying figure. At long wavelengths,

reasonable quantum efficiencies are attained. The detectors are

then competitive with the best single element photoconductive

detectors. A competitive grating array spectrometer, FOGS

(Witteborn and Bregman (1984), is capable of observing 4th

magnitude sources at 10 microns with a similar radiation

bandwidth, on a 1.6 meter telescope. THE INSTRUMENT is capable of

2nd magnitude at the present time. The current limit is not yet

set by fundamental processes, but rather by clocking

irregularities and pickup. Steps are being taken to reduce these
effects.

The well capacity of the CID is not what it should be. 100

Me- are anticipated from the design parameters, but 0.1 Me- have
been measured. This difference indicates a fundamental

misunderstanding about the design and manufacture of extrinsic

silicon CIDs. The well capacity remains a mystery. It limits the
application of the detector astronomically to narrowband rather

than broadband imagery. Narrowband instruments are much more

difficult to build and use than broadband instruments; and there

are many more scientific programs which can be pursued broadband.

The detector response of the CID is nonlinear near full

well. This causes data taking to be more complex than for a

linear system. Flat fields must be acquired at several

backgrounds and at several wavelength settings in order to

calibrate the nonlinear response. Each pixel has a different near

full well response. The flat fielding procedure is further

complicated by temperature dependent electronic zeros. Mapping

the nonlinear response is most necessary for the brighter sources

such as planets. Bright objects fill the wells near the top where
there are the greatest variations across the array. An example is

Venus which has been observed in the 10 micron range. It has

proved difficult to find a bright source which can be used to

match the well depth of this planet and fills the telescope beam
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II. THE INSTRUMENT

THE INSTRUMENT uses a 16x16 element Si:Bi detector array

of the AMCID type. It was manufactured by Aerojet-General and

packaged in a dual butterfly case using hybrid packaging

techniques Perry (1981). The Si:Bi substrate is processed with

meta]izations and oxide growth to give a 32x32 array format of

which a 16x16 sector is totally active. The last layer of

metalization and oxide growth has been deleted in favor of wire

stitch bonding for the purpose of improved yield. The chip is

epoxied to the butterfly package over a cutout region. Cmos

multipIexing chips are wire bonded to the row addresses of the

Si:Bi chip, while 3N163 p-channel MOSFET output amplifiers are
wirebonded to the column addresses. 100 Mohm bleed resistors are

at the MOSFET gate node to transform the detector current to a

voltage which is sensed by the MOSFET, and eliminates a reset

MOSFET. This genre of detector has been described in the

literature by McCreight and Goebel (1981) and McKelvey et at.

(1985). Detector performance parameters have been measured for

this chip and are consistent with good quality detectors of this
kind.

The detector is used in either of two optical

configurations, depending upon the wavelength range desired. In

the short wavelength range, 2 to 6 microns, the background is low

enough to a11ow reimaging of the ful! field of view at the field

stop onto the detector array. This configuration provides the

higher spatial resoIution images reported later. In the long

wavelength range, 6 to 17 microns, the backgrounds are too high

for direct reimaging, so the focal plane is moved outside the

dewar and the reimaging lens in front of the field aperture. The

field aperture is then a pupil stop, and the telescope secondary

is imaged there to block unwanted telescope structural radiation.

When used with the 1.5 % bandpass Circular Variable Filter (CVF),

the optical system background on an astronomical telescope is

sufficiently low to permit operation of the THE INSTRUMENT out to

13 microns. Some demagnification occurs at the ]ong wavelengths

because of the positioning of the lens.

The digita! electronics used in the data acquisition

stream have been described in previous papers by Stafford and
Jared (1982). In summary it consists of a dedicated 20 MHz clock

rate ALU with supporting ROM and RAM which reduces the information

bandwidth product through frame averaging. The data is then
transmitted via an RS 232 link to a Heurikon developmental Z80

microcomputer for data collection and processing. A CPM operating
system is used with MT+ Pascal language software used for the data

acquisition contro! and analysis programs. The analog electronics

consists of gain amplifiers at the dewar and S/H channels in the

digital electronics box. The clock and voltage generators are

also present in the digital electronics box (Pandora' Box).
Pandora's box is within one meter of the dewar, while the

microcomputer is within ten meters of the dewar.
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The observational forte of the THE INSTRUMENT is mapping
of emission line objects at the I to 4 arcsec scale over a field

of from 15 to 60 arcsec. Because of the use of a CVF, objects can
be mapped in atomic and molecular emission features as well as the

continuum. However, because of the limited well capacity within

the detector itself, it is difficult to do broadband photometric

mapping. This limitation, which is imposed by a warm telescope,
means only the brightest objects of any class are accessible to

the instrument. A space based cryogenicly cooled telescope would
not limit the sensitivity of the detector thus, and the instrument

would be limited only by fundamental detector parameters. It would

be able to make broad band measurements of vastly more objects.

Ill. Performance characteristics

THE INSTRUMENT has been tested extensively both in the

laboratory and in the field. Typical performance parameters are

listed in table I. The detector array has a few peculiarities
which are worth discussing. We will concentrate on the

limitations of the array rather than its strong points. This does

not imply that the array is incapable of producing high quality
and scientifically interesting results. The view here is that the

capabilities of the array are less than the potential of the AMCID

technology. Whatever limitations this array has are not to be

taken as a reading of the ultimate capabilities of an optimized
technology, and they are indeed impressive.

16 x 16 Si:Bi CID Array Performance
Measurements at Ames

= 11 _m at low (about IE6 ph/s) background

Responsive quantum efficiency

Well capacity
Read noise

Responsivity (17 _m)
NEP

Uniformity of responsivity

0.25

3E5 electrons

600 electrons

4 A/W

IE-16 W/ Hz or BLIP

10%

The quantum efficiency is a strong function of wavelength.

It peaks near the cutoff wavelength for the extrinsic dopant (17
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in the same manner. The Moon is probably impossible to flat field

properly. The wells are running just under full well. A raw data
image is presented here which shows the limb of the moon and the

vertical striping caused by the array readout procedure.

Amplifier crosstalk reveals itself as an asymmetry in the

point source response function in 2 dimensions. Crosstalk in the
CID arises from the voltage follower MOSFETs on each of the

columns sensing there nearest neighbors. It is substantial in

this array amounting to 20% between adjacent rows. There are

two ways that the crosstalk can be eliminated. We know that the

pixel to pixel crosstalk within a column is 0.1 % and it is

suspected that it is entirely optical at that level. Hence we can

model the point source response as part of the data reduction

process, which we are in the process of implementing. Then the
crosstalk can be remove analytically from the images. No AMCID

images presented to date by any of the various workers in the
field of astronomical imagery have as yet deconvolved the point

source response function. Worse yet it has not even been

mentioned that the images suffer from the effect, even when it is

apparent in the images themselves. A cleaner solution is to use
the MOSFETs in a current mode. This Translmpedance Amplifier mode

reduces the crosstalk by the open loop gain of the operational

amplifier. It is suspected that the point source response

deconvolution procedure would then be of little concern.

The amplifier noise ( 600 e-) for this array limits the

ultimate sensitivity in two ways. The noise floor limits the

measurement sensitivity in general. The MOSFET read noise is the

limit to the CID array used here. The limited well capacity of
the detectors forces the readout of the well at just under full

well. Under high background conditions, the readout must be at

the highest frequencies possible. Hence, it becomes extremely

difficult to record sequential frame reads for any study involving

transient phenomena such as source variability and atmospheric

seeing. The shot noise for a full well readout is about 500 e-,

which is nearly the same as the amplifier noise. One is forced to

read in the nonlinear region in order to attain a statistical

limit. In the linear detector range the detector readout process

is decidedly amplifier noise limited. The situation could be

improved greatly if selfheated Si:JFETs or Ge'jFETs could be used
instead. Then nearly 100 times fewer electrons could be read.

The other sensitivity factor is dynamic range, i.e., the ratio of

full well capacity to read noise. This factor is particularly

important in a space based instrument or when used in any low

background instrument. An ideal AMCID with 100 Me- well capacity
and a JFET readout amplifier with 10 e- read noise would have a

dynamic range of 10 million in one read. The present AMCID has a
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dynamic range of 500.

The image acquisition procedures are greatly influenced by

the above limitations. These procedures have been developed to

reduce the sources of interference to a minimum prior to the

recording of data frames. There are however procedures which are

necessary after frame recording and require additional data
collection, i.e., other than the image frame itself.

The digital electronics is programmed to use a wobbling
secondary mirror. On one half of the chop cycle, the detector

output is counted up; on the other half, it is counted down. This

procedure is repeated some large number of cycles. The large

infrared background from warm parts of the instrument appears at

the detector output as a large dc voltage or fixed pattern.
Nearly all astronomical sources are but a very small fraction of

this background. When measuring the large background with the A/D
converter, most astronomical sources are found in the least

significant bit. So it is necessary to remove this background
contribution and this can be done quite handily with a wideband AC

coupled amplifier. If the AC component of the fixed pattern is
sufficiently sma11, then the amplifier can have gain. Our CID

fixed pattern is determined by clock pickup and not by CID

nonuniformity, so we are currently limited to an extra gain of 5-

20 depending upon the circumstances. When these pickup sources

are eliminated an extra gain of up to 100 should be practicable.
Fluctuations in the fixed pattern pickup dominate the noise of all
other electronic sources. These fluctuations will scale down

linearly with the reduction of the clock pickup. With all
astronomical sources so far down in the noise, it is clear that

the instrument could take advantage of improved output amplifiers
in the near future.

Frames or raw data images are taken in a sequence of

quartets + - - +. + means that the star is in, for example, the

right field of view, as determined by the wobbling secondary, and

- refers to the left. The telescope is moved from + to - beams

and the frames are recorded. A source will not necessarily be

apparent in the frame + or -, because of the fixed pattern. After

one or more quartets are recorded, they can be coadded. Coadding
removes all fixed pattern as they are phase insensitive, while the

star, or stars, remain. The signal from the star is quadrupled,
while any statistical noise is doubled. Nonstatistical

interference is unaffected with the last big change usually

clobbering the star. Stripe and chevron patterns are certain
indications of interference, with dramatically black or white

pixel an indication of amplifier saturation. Check patters are an

indicator of unstable clock interference. As one might expect, it
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is much easier for extented sources to be discerned than point

sources near the noise limit. Point sources can actually appear

fainter than anticipated because of positioning at the four-

corners region of adjacent pixels.

After the combining of quartets, the pixel to pixel

variations and column to column variations of gain and offset must

be removed. We do all of these corrections with one relatively

simple procedure. The DC fixed patterns are observed by looking

at the sky nearby the source so that the fixed pattern will have
the same value seen by the wells in the source observation. Since

the voltage levels are much larger than the stellar signals, this

can be done in a relatively short time. By rotating a cold

aperture, 4 K, into the array's field of view, the electrical zero

background pattern can be measured. These are a sufficient set of
measurements to determine the so called flatfield correction to

any faint source. Bright sources require DC coupled array

patterns to be measured at several background values and a

nonlinear interpolation to the appropriate signal level in all the

pixels for a precise solution to the image problem. We have not

performed so complete of a solution to the image here but have
rather used a flat field of very similar voltage level to the

bright source. Hence we have some remaining structure in the

Venus images at ten microns which we are able to confidently
dismiss as an artifact of the data reduction procedure.

Saturation tests of the array and data system have been

performed for the brightest infrared source outside the solar

system, IRC+I0216. It is nearly a point source at our spatial
scale and is easily observed in a single pixel at the fastest

readout rates. By integrating for long periods of time we were
able to overflow the 24 bit words in the coadder RAM. Pixels

adjacent to the source position also showed the scattered
radiation from the source. Significantly the entire array did not

show signal.

The ultimate measure of the value of the instrument is its

ability to make infrared images with high fidelity. We have been

able to make images of a variety of sources: planets, protostars,

HII regions, planetary nebulae, and stars. Infrared mapping is
still a nove! field so there are few standards with which to

compare the images produced by THE INSTRUMENT. Three such objects

are presented here and comparisons can be found in the
astronomical literature: Venus, BNKL, and Mon R-2.

We have images of Venus in the near infrared at 2.9

microns where it appears as a crescent. Contemporaneous with our

observations, maps of Venus were made with a single InSb detector
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in a spatial scanning mode at similar wavelengths Allen and

Crawford (1984). In addition to the crescent of scattered solar
radiation, fainter and anomalous emissions were detected on the

dark side of the planet. At the time of our observations, October

1983, the sources of fixed patterns were insufficiently understood

in order to soundly arrive at a similar conclusion. Ten micron

maps of Venus have been known for years and we have used these as

a basis for evaluating the flat fielding procedure. In June 1985,
we were able to make observations of Venus at 1.7 and 2.3 microns

simultaneously with the Venera balloon expedition at Venus. These

images are challenging the data analysis programs because of the

large dynamic range required to observe the faint clouds on the

dark side of Venus while simultaneously observing the very bright
illuminated side.

At 12 microns images of Venus appear nearly circular on

the array. However. the point source response of the array has

not been removed. Carefu! examination reveals a greater extension
in the horizontal direction than the vertical. The effect is far

more obvious on a smaller planet like Mars. A bright star, which

is a point source in this case, like Alpha Orionis shows extreme

extension horizontally. In fact, the upper and lower vertical

edges on the image are quite different. A ful! point source
deconvolution is required to clean up the images. Unfortunately,

it is not even obvious that the normal image processing assumption
of a spatially invariant point source spread function is
reasonable.

For BNKL which is a star forming region in the Orion

Nebula, we have images taken at four wavelengths. BNKL has been

extensively studied at all wavelengths in the infrared and good

comparison maps are available Wynn-Williams et al. (1984). We

present these as outputs of the quartet coadding procedure to
demonstrate that the corrections necessary to the digital data are

subtle indeed. For the most part all features in the images are

in general agreement with the existing maps in the literature.

Each of the images represents about ten minutes of data

collection, including all the telescope overhead time. BN is the

northern source, pointlike, but clearly extended east-west due to

output amplifier crosstalk. KL is the southern region which is

extended in the image. It is relatively colder than BN as is

indicated by the decreasing brightness of KL at shorter

wavelengths. The quality of this image is more greatly affected

by the point source response of the array than by the lack of a
flat fielding correction.

Mon R-2 is an HII region with enbedded young stars. The

region has been mapped nicely by Hackwell et at. (1982) at a
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similar spatial resolution. Their map is spatially matched to the

array field of view and the source intensities cover a range of

magnitudes suitable for testing the response of the array to

multiple sources and intensities. There is also some degree of

low surface brightness material present which could be detected if

the instrument is really working well. The comparison of the map

and image are good with the brightest source IRCI easily detected,
and the fainter sources at the detection limit. There is no clear

indication of the low surface brightness material. This image

represents about 20 min of observing.

IV. SUMMARY

The instrument described here, THE INSTRUMENT, is a

powerful tool for astronomical research. Its capabilities include

imaging in a spectro-photometric manner many objects of current
astronomical interest. We have presented a detailed description

of the instrumental design and operational procedures. Examples

of the images produced by the instrument are given which include

planets, HII regions, starforming regions, and planetary nebulae.

THE INSTRUMENT is the prototype of similar space based instruments
to be flown in the 1990's.
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Figure il. Mon R-2 imaged at 12.5 microns.

22-13



ORIGINAL PAGE CS 
OF POOR QUALffY 

Figure 1 Figure 2 Figure 3 

Figure 4 Figure 5 Figure 6 

Figure 7 Figure 8 Figure 9 

Figure 10 Figure 1 1  
22-14 



N87-13727

INTERIM REPORT FOR DEVELOPMENT

OF

58 × 62 Si:Sb DETECTOR ARRAYS

Prepared for
NASA AMES RESEARCH CENTER

Moffet Field, California

Contract No. NAS2-12110

By

HUGHES AIRCRAFT COMPANY

SANTA BARBARA RESEARCH CENTER

75 Coromar Drive

Goleta, California

and

SEMICONDUCTOR DIVISION TECHNOLOGY CENTER

6155 E1 Camino Real

Carlsbad, California

6 December 1985

By

STUART WORLEY

STEVE GAALEMA

23-1



The paper describes work performed at Hughes IEGTCto fabricate antimony-

doped silicon (Si:Sb) detector arrays for use in 30 pmIR imaging applica-

tions. A description of the operation of the multiplexer readout circuit

which will be used for this application is also included.

This work wasperformed under contract NAS2-12110to Santa Barbara Re-

search Center (SBRC)for NASAAmesResearch Center, Moffet Field, CA 93117,

and under the cognizance of the NASAAmesTechnical Director, Craig McCrelght.

Detector Fabrication

The Si:Sb detector was fabricated using starting material supplied by

SBRC and standard silicon integrated circuit processing techniques. The array

is arranged in a format of 58 columns by 62 rows with a 76 × 76 pm plxel

size. This format allows the detector array to be used with the CRC228 read-

out circuit.

Connections to the readout circuit are made for each individual detector

plxel using an indium bump hybridization process. This process allows detec-

tors to be processed separately from the readouts to optimize the design and

fabrication of each. The detector chip is hybridized to the readout chip by

accurately aligning the two chips and then applying pressure to cold weld the

detector and readout indium bump.

Detector Measurements

In order to make measurements on individual detector pixels several

detector arrays were hybridized to fanout chips where connections to individ-

ual plxels can be made to a small number of elements. A limitation of the

fanout employed is that connections to adjacent plxels surrounding the detec-

tor element under test cannot be made. This limitation prevents measurements

of an effective increase in plxel area caused by fringing fields, thereby

limiting the degree of certainty of total plxel area function.

Figure I depicts the detector current measured as a function of tempera-

ture. This measurement was made using an external blackbody for the IR source

and an internal 12.5 micron filter to obtain the two backgrounds listed. The

BLIP temperatures calculated from this data are II.5K for the high background

measurements and 10.6K for the lower background data.
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Figure 2 shows current versus voltage data taken on the same plxel for

the same operating conditions. As mentioned above, responslvity cannot be

calculated from this data due to the uncertainty in determining the plxel

area.

Readout Circuit

Arrays of extrinsic silicon detectors can be read out using a direct

integration, source follower per detector circuit as shown in Figure 3.

Signal and background currents from the detector are integrated on the detec-

tor capacitance and the input capacitance of the readout circuit. The inte-

gration is initialized by turning on the reset MOSFET switch to set the sense

node potential to VRS T. The capacitance is then discharged by its associated

detector during the integration period. During the last part of the integra-

tion period, the sense source follower amplifier is enabled by the enable

transistor, and integration voltage is read out onto the column bus. The

sense capacitance is then reset and the cycle repeats. The difference in

output voltage before and after the reset pulse is proportional to the in-

frared energy incident on the detector. By sequentially enabling and disabl-

ing the source follower amplifier, only one row of amplifiers is active at any

time and power dissipation is significantly minimized.

A series of waveform photographs (Figure 4) shows several multiplexed

plxels for integration periods from 1.56 ms to 14 ms. Three levels are seen

for each plxel: first, a low level representing the partially discharged

sense capacitor, then a short reset feedthrough, and finally a new initial

level. As the integration period increases, the voltage change at the sense

node increases, and the detector becomes deblased, resulting in saturation at

this relatively high background level.

A photograph of a small portion of a particular integrated circuit imple-

mentation of the above circuit is shown in Figure 5. This 58 x 62 array of

readout pixels has been chosen to evaluate the Si:Sb detector arrays described

earlier.

Hybrid Measurements

Measurements made on Si:Sb detector arrays hybridized to readout chips

are currently being made and will be reported at a later date.
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Figure 5.  CRC-228 Photomicrograph 
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Abstract

In this paper we will describe the initial testing performed at N.O.A.O. by the

Infrared Detector R & D group on the Hughes MOS DRO ( Metal Oxide Semiconductor

Direct Readout ) with a Si:In extrinsic infrared array. The testing to date has been of a

screening nature and the results are primarily qualitative rather than quantitative. At a

later date, we will be getting into the performance optimization phase of our program.

An encouraging result is that the detector flux response is very linear over three orders of

magnitude. We have also found that this response is strongly dependent on the detector

temperature, to the extent that thermal transients introduced during the chip readout

will affect the performance. We were able to obtain a responsivity of 1 A/W at 2.2

microns with a bias of 15 volts, which is well below what we feel is the optimum bias.

1. Introduction

Initial screening involved several arrays, but the data presented here were taken on

only one array. The test temperature ranged from 13°K to 50 °K where the detectors

became inoperative. The test dewar was a modified Infrared Laboratories (HD-3) dewar

fitted with a cooled K band (2.2 micron) filter. This filter was chosen for the convenience

of laboratory testing rather than any astronomical significance. The controller used to

generate the clocking waveforms and control signals was a fixed state machine which also

operated the signal processor. This proved to be a limitation on our ability to try various

different operating scenarios. The host computer was a DEC 11/23+ CPU with 500K

bytes of memory and an 80 Mbyte Winchester disk.

ttOperated by the Association of Universities for Research in Astronomy, Inc. under contract with the National

Science Foundation.
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We are developing u new dewar which will be used for array evaluation as well as

observing at Kitt Peak and Cerro To]olo. This dewar will utilize cold reflective reimaging

optics and will have a cold filter wheel with provisions for eight infrared filters. The

dewar is now being fabricated, and we expect it to be operational this fall. To operate the

new dewar we are also developing improved electronics and a new controller. The con-

troller will be similar to the NOAO CCD controller which utilizes a 2901 uP and RAM

memory. In this way the operator can easily change the clocking and processor control

signals to evaluate their effect on array performance. In the following section we describe

tests of the detector responsivity and linearity as a function of temperature and back-

ground flux, at a fixed bias of 15 volts, the maximum permitted by our present test setup.

We have made no attempt to optimize bias at this time, but we feel that larger bias vol-

tages should be used for optimum operation.

Block diagrams of the present and planned future test systems are shown in Figures

1 & 2. A more detailed description of the new dewar and operating system will be the

topic of a later paper.

2. Test Results

2.1. Responslvlty testa

The purpose of these tests was to determine the effect of operating temperature

and background flux on responsivity. Figure 3 presents the results of the small-signal

(difl'erential) linearity test. This is a critical test of a detector's astronomical utility, since

this application requires the measurement of small signals against a large sky background,

particularly at longer wavelengths. This test was performed by illuminating the array

with a black-body to generate the signal and using a lamp to generate an arbitrary back-

ground. There was no attempt to calibrate the background, but it was varied from zero

to saturation in reasonably uniform steps as determined by the background count. The

data was derived by chopping the black-body and subtracting the results of the black-

body plus background frames from the background only frames. Rows 10 thru 45 of the

resultant frame were then averaged to reduce the effect of individual pixels. The slope

across the array results from mis-alignment of the blackbody causing some vignetting due

to the cold stop in the dewar, as this effect is not seen in other data. The response is

encouragingly insensitive to the background flux over a wide range.

Figure 4 is a plot of response versus temperature under fixed signal conditions.

Again rows l0 thru 45 were averaged to reduce the effect of individual pixels. Above

30 °K responsivity increases with temperature while there is considerable variation below

that temperature. Some of the possible explanations are that the eff,_ctive gain

(volts/electron) is higher below freeze-out (-25°K) due to reduced capacitance and that

the on-chip amplifier gain is higher below 25 ° K. In addition the photoconductive gain is

probably increasing with temperature due to the increase in material mobility. It is also

possible that the detector response may vary with temperature, particularly at a
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wavelength well below the peak response at 5 microns. Although we have not had

sufficient time to isolate the cause of the effect, it is evident that precise temperature

control is of critical importance in operating; this array.

2.2. Llnearity tests

Again two types of linearity tests were performed. Figure 5 is a plot of linearity

versus background flux at various temperatures. This data is similar to that presented in

Figure 3 but the form of presentation is different. It shows that the gain decreases slightly

with background but that the slope is not a function of operating temperature. There is

a considerable change in gain as the temperature is reduced below 25°K, which has also

been seen in transfer function tests run on the DRO with the reset held 'ON'. The

decrease may be due to the reduction in photoconductive gain due to reduced detector

bias (unlikely) or to gain changes in the DRO due to the shift in the amplifier operating

point with signal. The optimum location of the operating point of the amplifier has not

been fully evaluated at the time this data was taken.

Figure 6 is a plot of the ratio of measured signal to the ratio of the blackbody aper-

ture at various detector temperatures. With the exception of the one value at 16"K the

array is very linear over three orders of magnitude. Good linearity versus signal flux has

also been measured at the telescope during some limited engineering tests performed at

the 1.3M telescope on Kitt Peak.

2.3. Power dissipation tests

In order to plan for cryogen consumption we evaluated the power dissipation of the

array under various operating situations. The test was performed by turning all power off

to the array and setting an operating temperature by using an external heater. The array

was then operated and the external heater was adjusted to return to the original operat-

ing temperature. The difference in the two external power measurements was attributed

to power contributed by the array. With the array operating continuously, at a 28 + ms.

per frame rate, the array dissipated _13.5 mw. This could be affected by adjusting

VeARST, which controls the 'on' resistance of the address line pull down mosfet. This
adjustment could reduce the dissipation by _3 mw but at the expense of array perfor-

mance. It should be possible to reduce this effect by using a different clocking scheme

without having an adverse effect on array performance. Another source of power was the

output source followers which dissipated _2.5 mw. This contribution could be reduced

by decreasing the drain current and the drain voltage. However, it is not a good idea to

turn the source follower off during integration for the reasons described below.

During the course of this work we found that the array was very sensitive to its

short term operating temperature. Changes in the temperature of the DRO, too small to

be measured by the temperature sensor mounted on the cold finger, had considerable

effect on the dc level and gain of the array output. These changes were small but frame
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to frame changes are a fatal form of 1/f noise. For this reason it is very important to

reduce the power dissipated in the chip and, more importantly, to maintain it at a con-

stant level when data is being collected. This requires that the readout be the same in all

respects and that delays be inserted before data is taken after changing integration rates

to allow the detector to restabilize. This is not a serious problem for ground based work

but is an important consideration for long integrations in a low background space

environment.

3. Conclusions

These arrays have been used several times at the 1.3 and 2.1 meter telescopes at

Kitt peak with favorable results. The performance of the array is illustrated by Figure 7,

an image of Comet P/Halley in the H band (1.6#m) obtained on the KPNO 2.1 meter

telescope on 7Nov85. The total integration time was 1200 seconds (obtained by co-

adding) and the plate scale is 1.5 arcscc/pixel. Although the detector performance was

limited by internal background, which limited the integration time to 2 seconds, it was

possible to subtract off the very small signal level from the large background level with

virtually no fixed pattern noise. The RMS noise in Figure 7 corresponds to H --_15 mag.

Much work still needs to be done to optimize performance and to fully understand the

effects of thermal transients on the DRO and detectors. SBRC is making arrays using this

DRO and InSb detector material. It will be very interesting to compare the performance

of Si:In with the InSb when both arrays have been more fully characterized. Certainly

the linearity and integration capacity are pluses for the Si:In detectors, while high quan-

tum efficiency, photovoltaic nature, and low dark current are pluses for the InSb detec-

tors.
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Introduction:

An infrared array detector evaluation program is in progress at the Goddard Space

Flight Center. Array devices are being tested under this effort for the Infrared

Array Camera (IRAC) for the Space Infrared Telescope Facility (SIRTF). The three

wavelength bands for this instrument cover the range from 2 to 30 micrometers. The

instrument goal isw to achieve background limited and diffraction limited imagery

over most of the instrument wavelength range. Since the SIRTF telescope is a cryo-

genic cooled instrument, these requirements place severe performance limitations on

the detector.

The state of the art for array detectors has advanced rapidly in the past few years

from small format, modest performance, arrays to the current larger format low

background devices. As a part of our evaluation program, we are testing one such

device, a Hughes Carlsbad Research Center/Santa Barbara Research Center 58 by 62

gallium-doped silicon infrared array.

This device is a hybrid array composed of a detector substrate bump bonded to a

direct readout (DRO) silicon multiplexer.

Detector Program Goals:

I. Characterize the performance of existing array devices.

2. Evaluate existing Si:Ga DRO device under anticipated SIRTF/IRAC conditions.

3. Conduct performance evaluations under full-up operating conditions.
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CRC/SBRC Si:Ga DRO Array 

This i s  a photograph of the  Si.:Ga DKO a r r a y  i n  t he  68 pad l e a d l e s s  ceramic 
ch ip  c a r r i e r ,  The a r r a y  i n  the  cen te r  i s  bonded t o  the  ceramic c a r r i e r  and 
e l e c t r i c a l l y  connected by the  t h i n  w i r e s ,  This i s  one of t h e  new generat ion 
of devices  which u s e s  a cryogenic MOS rnul.tipler,er bump bonded t o  a d e t e c t o r  
a r r ay  I This subassembly was furnisht?d t.o the  Gocldard S p c e  F1 i q h t  Center by 
t h e  Sant:a Barbara Research C e n t e r ,  T h i s  device was not  t a i l o r e d  f o r  t he  
SIRTF instrumerit bu t  was provided a s  a base l ine  device represent ing  the  MOS 
direct :  readout. capab i l i t i . e s .  
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SI:GACRC 228DIRECTREADOUTARRAYCHARACTERISTICS

MATERIAL

DOPANTCONCENTRATION

SI'GA

5-6X 1016GAIQ_

WAVELENGTHRANGE 3 TOI7MICRONS

MULTIPLEXER CRC-228

FORV_T 58X62

PIXELAREA 75 NM X Y5 uM

PIXELSPACING 75 _M X 75 NM

MULTIPLEXERGAIN 0.7

SENSENODECAPACITANCE 0,1PF

DRO ELECTRICALRESPONSE

WELL CAPACITY

1,12.VIE

3X 106E
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Facing Page: Simplified Block Diagram

This diagram is the simplified schematic for an addressed unit cell of the

DRO array through the electronic signal processing used at Goddard. Input

photoflux incident on the pixel would follow the solid line diagram in the

lower left of the schematic which includes the reset pulses. When operating

the array as an imaging device, the output from the common driver includes

the signal pulse (shown by the dotted line), the reset pulse, and the reset

level immediately following. In the integration time (Ti), the pulse

sequence from other addressed unit cells are read out such that a pixel

pulse stream is created. For the CRC 228 chip there are two common drivers,

one for the even pixels and one for the odd pixels. The signal processor

is a double sampling filter which simultaneously differences the unit cell

reset and signal levels and suppresses the MOSFET i/f noise. The unit cell

difference is digitized and processed through the data acquisition system.
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POWER DISSIPATION

TOTAL DEVICE POWER DISSIPATION 4,000 MW

AVERAGE UNIT CELL DISSIPATION 0,984 MW

AVERAGE DRIVER DISSIPATION X2 i,125 MW

ESTIMATED CLOCK POWER DISSIPATION 1,900 MW

FPA TEMPERATURE 5,7K

TI 0,i SEC

DET BIAS 14 v

BACKGROUND MINIMUM
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DROELECTRICALTRANSFERFUNCTION
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DRO Electrical Transfer Function

The DRO electrical transfer function highlights the unit cell/common driver

operating point. This plot was generated with the detector electric field

reduced to zero, the input applied to the reset level and the output

recorded at the common driver output. We operate the array at a liquid

helium bath temperature and biased above the kink at 2.4 volts.
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TESTCAPABILITIES

FOCALPLANETEMPERATURE 4,2 K TO 20 K

SIGNALFLUXRANGE(UNFILTERED) 1014 TO 103 P/CM2

SIGNALFLUXRANGE(iiNM ,5_M BW) 3 X 1011TO 3 X 102 P/OVl2

BACKGROUND(BGNDDET) LESSTHAN1,5X 107 P/CYr?

READOUT FORMATS 7 X 16
16 X 16
29 X 32
29 X 62

SYSTEMGAIN 32 TO 1120

SYSTEMSENSITIVITY 70 TO 2 E/BIN

SYSTEMNOISEFLOOR(DROINPUT) 60 ERMS

INTEGRATIONRANGE 0,025TO 9OO SEC,
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INTERNALREFERENCESOURCE
TEMPERATURECALI-BR_ION
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Internal Reference Source Calibration

An internal reference source was placed in the helium temperature

enclosure. A temperature sensor was hybridized to the source to record

physical temperature. A plot of the power dissipated in the source and the

measured physical temperature indicate a useable range from 40 deg Kelvin

to about 250 deg Kelvin. The low mass of the source allows modulation at a

1 Hz rate.
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Relative Signal to Noise Versus Detector Bias

The detector bias sensitivity of the present array is highlighted in the

plot of relative signal to noise versus detector bias. The rolloff in

performance above 15 volts bias is due to detector breakdown at the

background tested.
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ORO DRIFTRESPONSE
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DRO Drift Response

A preliminary evaluation of the drift response was conducted by recording

the array output, waiting approximately an hour, and recording again. The

results for a detector integration time of 3.5 seconds indicate good drift

response under equilibrium conditions for the times considered.
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Facing Page: Signal to Noise Improvement with Integration

The facing page pictures a series of integrations showing the signal to
noise improvementas a function of the integration time. The vertical axis
is arbitrary bin number, the horizontal axis is the frame number. The
integration time per frame is shown. Visible in the pictures is the "hook
response" frequently seen in conventional photoconductors under low
background conditions. The next plot indicates the performance improvement
for the current device. To avoid the anomalouseffects, equal numbersof
frames were comparedat the negative going transition to determine the mean
and variance.
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PRELIMINARYSI:GADRO ARRAY TEST RESULTS

IRAC

IDEAL GOAL RESULTSTO DATE

RESPONSIVITY(A/W@ 117z)

READNOISE (E- RMS)

DARKCURRENT(E-/SECPIXEL)

8,87

18-50 < i00

< 2O0

4,6

1400- 2000 (SYSTEMLEVEL)
180 - 300 (OUTPUTFET)

<I0 4 (MATERIAL OR LIGHT

LEAK LIMITED_ TBD)

TEST CONDITIONS: T = 5,2K, MINIMUM BACKGROUND,

Preliminary Array Test Results

Responsivity as measured with the internal reference source appears to be

very good.

The read noise under full up system operation is considerably higher than

expected. With the unit cell clocks disabled and sampling the noise from a

single unit cell, the noise is considerably improved though not as low as

predicted (80-100 eRMS). The effects of the measurement setup and their

effect on the noise performance are currently under investigation.

Dark current is considerably higher than desired but not higher than

expected for the doping concentration of the device and the operating

temperature. Also, at this time we are unable to determine if any of this

dark current is due to light leaks in the test system.
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FUTURE WORK

o MINIMIZE CLOCKING AND BIAS NOISE SOURCES

o CONTINUE INVESTIGATION OF DARK CURRENT

o INVESTIGATE ARRAY OPERATING TEMPERATURE EFFECTS

o INVESTIGATE LONG INTEGRATION TIME CHARACTERISTICS

o VERY LOW BACK GROUND PERFORMANCE

o REDUCTION OF FOCAL PLANE POWER DISSIPATION

o LOW BACKGROUND IMAGING CHARACTERISTICS

Summary :

we are very encouraged by the preliminary results from our testing of the

Hughes Si:Ga array. The device functioned predictability and repeatibility

at the low temperatures needed for SIRTF. The power dissipation was

reduced to acceptable levels while still maintaining the device speed. The

infrared response was excellent and the degree of "anomalous" effects was

comparable to conventional photoconductors. The device dark current will

need to be optimized for the SIRTF application and is comparable to conven-

tional photoconductors. The read noise as measured to date has not been

minimized, and an excess due to clock coupling is indicated by our tests.
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N87-13730

EVALUATION AND CHARACTERIZATION OF HYBRID ARRAYS

John F. Arens, Michael C. Peck

University of California, Space Sciences Laboratory, Berkeley, CA.

Project Summary

An Infrared Camera has been built at the University of California at Berkeley for astronom-

ical observations and for testing arrays for satellite based work. The detectors are sensitive to

mid infrared wavelengths. The camera has been tested at the University of Arizona 61" and 90"

telescopes and the NASA IRTF. These tests have demonstrated a sensitivity consistent with pho-

ton shot noise with an --_10% quantum efficiency for each pixel when the camera was used with a

1.6% spectral filter or when used with a Fabry-Perot having a resolving power of 2000. Initial

measurements of read out noise, dark current, cross talk and hysteresis have been made in our

laboratory.

The detector chip we are currently using is a hybrid array manufactured by the Hughes Air-

craft Company. Because part of our goal was to develop and advance new technology, we

decided to work with a switched MOSFET array. This architecture is very promising, and this

proposal is addressed to quantifying the detector parameters carefully.

Introduction

An infrared camera sensitive to --_10 micron wavelength radiation has been built at the

University of California at Berkeley and has been used for detector testing and astronomical

observing at the University of Arizona 61" and 90" telescopes and the NASA IRTF. The detector

array is a 10 x 64 element, doped silicon, hybrid chip manufactured by the Hughes Aircraft Com-

pany. The use of an array allows all points of an image to be obtained simultaneously and

without scanning the telescope. Data acquisition times are thereby reduced by N, the number of

pixels; and the relative spatial fidelity of the image is greatly improved by eliminating first order

telescope drift effects.

Infrared detector arrays are similar in concept to visible light, silicon CCD's currently being
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used in that they are photon counting, charge-transfer devices. However, visible light technology

has limitations for infrared observations. Narrower electronic bandgaps in the currently less tech-

nologically developed infrared detector materials produce larger dark currents than in undoped

silicon in spite of cooling the infrared devices. The enormous foreground radiation fluxes from the

telescope and atmosphere often dictate very rapid readouts compared with CCD readout times.

New technology developments were required for constructing infrared array detector systems.

Several groups are currently developing infrared cameras and spectrometers using microelec-

tronic, multipixel chip detectors. The design of the first camera built was developed by the prin-

cipal investigator (Arens, 1981, 1983, 1984) and met the criterion of rapid readout needed for the

high fluxes of broadband, thermal infrared observations. This camera was tested at several tele-

scopes. An Aerojet Electrosystems Corporation bismuth doped silicon accumulation mode charge

injection device served as the detector.

Slightly modified versions of this detector (Parry, 1983) have been used at the Ames

Research Center (McCreight, 1981, Goebel, 1983) in very low background tests for space flight

applications. This detector is also being built into another NASA funded system (Jones, 1983).

A Rockwell International charge coupled device (CCD) with an indium doped silicon detec-

tor layer and Image Information detectors are being built into a system and tested in Hawaii

(Pommerrenig, 1983) for IRTF application. NASA is also supporting the construction of a system

using a Santa Barbara Research Center indium antimonide-CCD hybrid detector (Forrest, 1983).

A Hughes Schottky barrier array has been built into a camera by Al Fowler at Kitt Peak

National Observatory. He has plans to build an InSb array camera.

Other published and unpublished work has been performed in evaluating detector arrays

(Infrared Detector Technology Workshop, Ames Research Center, 1983). The above descriptions

should serve only to describe the more elaborate systems known to us.

The development of new technology was a partial goal of the project which was originally

funded by DARPA, leading us to a complete redesign of the Goddard camera and the inclusion of

a detector array of different type from those used by any other astronomical investigators.
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Camera Description

The camera was designed around a detector array with multiple parallel outputs and around

a computer with good interfaces to external hardware. The system is composed of two parts, the

dewar and custom electronics, and the computer. The two parts are connected by optic fibers for

carrying the signals and by an IEEE 488 bus for transmitting control and monitor data.

The present detector arrays are hybrid, I0 x 64 element, switched MOSFET, arsenic and

gallium doped silicon arrays developed by the Hughes Aircraft Company. The drive electronics

has a flexible timing and voltage configuration and is controlled by an IEEE 488 bus from the

computer. The output from the array flows in 10 channels, each of which is amplified, correlated

double sampled, and digitized to 15 bits. The signals are then sent over the optic fibers to the

computer. Depending on the multiplexing configuration, up to 1000 frames/second can currently

be read out.

The computer is a Sun Microsystems workstation with additional multibus cards for input

and output. The operating system is UNIX bsd 4.2, and the camera control and operations

language is MAGIC/L. The Sun central processor as well as four Mierobar processors have

Motorola 68010 and 68000 chips and are used for control and data acquisition respectively. The

system contains a color monitor for data display.

Figure 1 is a diagram of the components of the camera. The dewar assembly allows opera-

tion of devices in vacuum at any temperature from liquid helium (4 K) to room temperature and

incorporates a set of holder wheels which are controlled by stepper motors for the positioning of

filters or sources (Figure 2a). The assembly is electronically controlled by a digital package (Fig-

ure 2b) including a flexible method for setting the voltage levels and timing of input signals neces-

sary for operating the Hughes readout chip. All parameters are controlled by a Sun microsystems

(Figure 2d) workstation via an IEEE-488 interface connecting the multibus cage of the worksta-

tion to a Hewlett-Packard multiprogrammer which operates the digital electronics package.

Outputs from the detector array are processed by the analog package (Figure 2c) which con-

tains several sets of amplifier and analog to digital converter chains. Control signals from the

26-3



digital package coordinate the readout chip timing with the switched sampling of the amplifiers

and the digitization of the chip outputs. Four optic fiber links (each with a capacity of 20 mega-

bits per second) transfer the digitized signals to the workstation.

The components contained in the multibus cage of the Sun microsystems workstation are

indicated in the system diagram (see lower portion of Figure 1). The optic fiber links and IEEE-

488 cable connect the workstation with the analog and digital electronics. The IEEE-488 mul-

tibus controller enables software in the workstation to control the operation of the facility. Each

optical fiber is interfaced to a multibus card containing an independent Motorola 68000 micropro-

cessor with local memory. Several of these processors can receive data in parallel for subsequent

transfer to the primary Sun processor card, which executes the UNIX bsd 4.2 operating system.

All of these processors execute programs written in MAGIC/L, a threaded code language designed.

for interactive applications. The workstation incorporates a 400 megabyte disk, 9 track tape

drive for data storage, and a color display system.

Figure 3 is a diagram of the MOSFET circuit necessary for operation of the readout chip.

The diagram has been divided into several functional portions of the circuit. The pixel selection

circuit indicates how a sequence of address lines can select an individual pixel by turning on the

gates of the VDD bias MOSFET and the enable gate of the reset MOSFET. Signal charge is gen-

erated by the detector portion of a pixel and is fed into the gate of the signal MOSFET. The

Urese _ signal allows the gate of the signal MOSFET to be reset to the Vrese t level for any pixel that

is enabled by the reset MOSFET. The readout MOSFET is connected to the signal MOSFET in

a source-follower arrangement providing power for driving an external circuit.

The coordinated sequencing of the reset line and switches S1 and $2 in an external circuit

are schematically indicated in Figure 4 illustrating the correlated double sampling technique used

for measuring the charge collected on the gate of the signal MOSFET. The times of changes in

the states of SI, $2 or Ureset during a single cycle are numbered one through six. The voltage

difference, dV, across the correlated double sampling capacitor CCDS between time 5 and 6 is

determined by the difference in the output, prior to reset (time 1) and after reset (time 5}. S1 is
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open during reset, insulating Cops from the large reset pulse. Between times 5 and 6 the voltage

across the CCDS can be sampled and held for subsequent digitization by an A/D converter.

Analysis time per pixel may be as fast as 10 microseconds to rapidly read out the entire array.

Figure 5b is an o6cilloscope trace of the repeated operation of an illuminated single pixel.

The upper portion of the trace is the output, Vout of the amplifier chain as illustrated in the lower

half of Figure 4. The lower portion is the input to the sample and hold with correlated double

sample analysis time set to 2 microseconds and reset time interval set to 200 microseconds. Fig-

ure 5a is an oscilloscope trace of three different pixels operated sequentially. Note the discon-

tinuity corresponding to pixel advance. The different levels of outputs of the correlated double

sample (lower traces of Figure 5a) indicates the different amounts of charge collected on the gates

of the three separate signal MOSFETs. The noise labeled "digital pickup" does not affect the

output of the CDS. The different voltage levels during and after reset are caused by capacitance

coupling and charge transfer from the reset MOSFET. The capacitance at the gate of the signal

MOSFET with reset off is 0.08 pF.

This readout design is less susceptible to problems involving incomplete charge transfer or

dielectric relaxation effects and to blooming or charge bleeding between pixels. Our tests have so

far confirmed these expectations.

Telescope Testa

The most important conclusion from the telescope tests involved the performance of the

arrays at various background levels. Through the narrow-band (1.6°_0) filter near 10pm the array

performed essentially as expected and about as well as good discrete doped silicon detectors.

From the measured response to starlight, we estimate the product of quantum efficiency (y), pho-

toconductive gain (g), and system transmission (r) to be r/gr _6% at X _- 9pm. Estimating the

transmission of the telescope, lenses and filters to be r _50%, indicates _g _12_Vo. From the

measured signal-to-noise ratios on stars, summing both signal and noise over a 25 pixel (4" x 4")

area, the NEFD was determined to be - 7 Jy/x/-H_ at X = 9pm, Ak -_ 0.15_um. The NEFD of

each pixel was then - 7/x/_ = 1.4 Jy/_v/_. The camera performance can be compared with
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other infrared detector systems and the expected photon shot noise. The University of Arizona

bolometer system on the same telescope has a NEFD of 0.6 Jy/x/_zz at X = 10.5pm, AX = 5/_m,

5" circular aperture. Scaling by (A),) 1/2 that system would have an NEFD - 3.5 Jy with AX

0.15pm. The infrared camera in its first tests was therefore - 2 times worse, for detection of a

point source, than a very good bolometer system with AX = 0.15/_m. Comparison of the perfor-

mance of the infrared camera with photon shot noise indicates that it was photon noise limited

with _10V/o at k _- 9/_m, AX = 0.15/_m.

At shorter wavelengths, observations also show.ed photon noise limited sensitivity, but with

a reduced quantum efficiency, r/ _5tr_ at X = 5_um. Even through a Fabry-Perot at X = 4_um,

A), _.003/_m, nearly photon noise limited performance was achieved by slowing down the array

cycle time to 2/3 second. These observations showed that the array worked as expected, with no

significant excess noise over more than three orders of magnitude variation in background flux.

The only problem (other than cloudy weather) with the observations at 4jum, was that InSb detec-

tors can work at this wavelength and have about ten times better quantum efficiency than doped

silicon.

The first device tested was an arsenic doped silicon array which was known to be non-

uniform due to contact problems. This array was saturated when used with an 8-13/_m filter at

the fastest readout rate possible, - 1 kHz for the entire array, or 640 kHz pixel rate. Through an

intermediate bandwidth filter (10.5-12/_m) the array was no longer saturated but showed substan-

tial excess noise which was approximately proportional to photon flux and had a l/f spectrum.

The result of this noise was that the NEFD of the camera was no better with 15% resolution than

with 1.5%.

A second device, a gallium doped silicon array, was tested in 1985. It was much more uni-

form (_10_o variations) and did not exhibit excess noise. However, possibly because of improved

responsivity, it was sufficiently saturated that it lost most of its responsivity when used with even

I/_m bandwidth filters. Tests of its performance at high backgrounds were made by reading out

only 1/4 of the array, allowing ~ 4 kHz readout rate. Although still partially saturated, the array
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then worked with no excess noise through a lpm bandpass filter.

Laboratory Measurements

Preliminary work has been started on making accurate laboratory measurements of proper-

ties of the arrays. A dewar has been constructed for dark current and low light level measure-

ments and will arrive soon. Software is being written to facilitate the acquisition and analysis of

data. However, some measurements have been made, including one using a new technique for

measuring hysteresis and pixel-to-pixel crosstalk. The data from these measurements are shown

in the remaining figures. Figures 7, 8, and 9 show successive readouts from one pixel and the

Fourier transform of the data. I/f noise can be seen. The data is similar for other pixels.

Figure 10 shows accumulated charge vs. integration time. The charge is caused by dark

current, photons that leaked in, on both. Although we used two, nested, fairly light tight LHe

enclosures light leaks have existed. The low, horizontal line is the A/D output with the chip

disconnected, showing the contribution of electronic noise.

Figure 11 shows the fluctuations of the accumulated charge in a set of measurements vs. the

square root of integration time. The straight line is the square root of the difference 6f accumu-

lated charge and electronic noise in Figure 10. The low, horizontal line is the fluctuation of the

electronic noise.

Figures 12, 13, and 14 show hysteresis following an x-ray event. The first two figures, with

different ordinates and abscissas, show charge trapping and slow leakage in readouts following the

x-ray event. Figure 14 shows a different phenomena, anticorreIation of the following readout.

Pixel-to-pixel cross talk was also measured using x-rays. X-rays primarily ionize silicon

atoms rather than dopant and produce charge densities vastly different than typical infrared radi-

ation sources do. However, hysteresis and charge spreading probably do not depend on the mobil-

ity of holes or charge concentration and can probably be measured using x-rays. Further work is

required to ascertain the validity of this approach. Figure 15 shows the spreading in several x-ray

events.
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(a) Multipixel, Sequential Sampling 

Figure 5 

(bl Single Pixel, Ropmted Sampling 

Correlated Double-Sampling Timing Traces 
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